بهینهسازی بازارهای انرژی و خدمات جانبی در شبکههای انتقال و توزیع از طریق یک چارچوب دو سطحی بهینه با در نظر گرفتن بارهای منعطف، خودروهای الکتریکی و سیستمهای ذخیرهساز
محورهای موضوعی :
مهندسی برق قدرت
آزاده آرزوی عراقی
1
,
امیر احمری نژاد
2
,
محسن علیزاده
3
,
مجتبی بابایی
4
1 - دانشکده مهندسی برق و کامپیوتر، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده فنی و مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده مهندسی برق و کامپیوتر، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشکده مهندسی برق و کامپیوتر، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1402/02/31
تاریخ پذیرش : 1402/05/23
تاریخ انتشار : 1402/12/01
کلید واژه:
شبکههای انتقال و توزیع,
انرژیهای تجدیدپذیر,
خودروهای الکتریکی,
برنامه پاسخگویی تقاضا,
سیستمهای ذخیرهساز انرژی,
چکیده مقاله :
در این مقاله یک چارچوب جامع دو سطحی برای برگزاری بازارهای رقابتی انرژی و خدمات جانبی در شبکههای انتقال و توزیع ارائه میشود. در سطوح اول و دوم چارچوب پیشنهادی به ترتیب بازارهای انرژی و خدمات جانبی برگزار میشوند. در چارچوب پیشنهادی، تأمینکنندگان ظرفیتهای بازار رزرو چرخان، واحدهای حرارتی معمولی بوده، در حالی که تأمینکنندگان ظرفیتهای بازار تنظیم ژنراتورهای با عکسالعمل سریع، سیستمهای ذخیرهساز، خودروهای الکتریکی و تجمیعکنندگان پاسخ تقاضا هستند. یک برنامه پخش بار AC خطی در چارچوب پیشنهادی گنجانده شده تا قابل اجرا بودن نتایج شبیهسازی در شرایط بهرهبرداری واقعی را تأیید کند. چارچوب معرفی شده به صورت یک مسئله بهینهسازی خطی مدل میشود که تابع هدف هر سطح آن مجزا است. این چارچوب بر روی یک سیستم تست که شامل یک شبکه انتقال 30 شینه متصل به چهار شبکه توزیع 8 شینه پیادهسازی شده، و برای شبیهسازی آن از حلکننده CPLEX در نرمافزار GAMS استفاده میشود. خروجیهای به دست آمده از شبیهسازی به وضوح تأیید میکنند که مشارکت منابع درون شبکههای توزیع در تأمین ظرفیتهای رزرو چرخان، سهم واحدهای حرارتی گران را در بازار به طور قابل توجهی کاهش داده و از این طریق هزینههای روزانه سیستم را پایین میآورند. علاوه بر این خروجیهای شبیهسازی نشان میدهند که مشارکت تجمیعکنندههای پاسخگویی تقاضا، سیستمهای ذخیرهساز و خودروهای الکتریکی در تأمین ظرفیتهای مورد نیاز بازار تنظیم، نه تنها هزینههای این بازار را پایین آورده بلکه شاخصهای فنی همچون مشخصه ولتاژ را به طور چشمگیری بهبود میدهد.
چکیده انگلیسی:
In this article, a comprehensive two-stage framework for conducting competitive energy and ancillary services markets in transmission and distribution networks is presented. In the first and second stages of the proposed framework, energy and ancillary services markets are held, respectively. In the proposed framework, the suppliers of spinning reserve market capacities are conventional thermal units, while the suppliers of regulation market capacities are fast response generators, energy storage systems, electric vehicles, and demand response aggregators. A linear AC power flow program is included in the proposed framework to verify the applicability of the simulation results in real operating conditions. The introduced framework is modeled as a linear optimization problem in which the objective function of each stage is solved separately. This framework is implemented on a test system that includes a 30-bus transmission network connected to four 8-bus distribution networks, and the CPLEX solver in GAMS software is used to simulate it. The simulation outputs clearly confirm that the participation of resources within the distribution networks in providing spinning reserve capacities significantly reduces the share of expensive thermal units in the market and thereby lowers the daily costs of the system. Moreover, the simulation outputs indicate that the participation of demand response aggregators, energy storage systems and electric vehicles in providing regulation market capacities, not only lowers the costs of this market but also significantly improves technical indicators such as voltage characteristics.
منابع و مأخذ:
S. A. Mansouri and M. S. Javadi, “A robust optimisation framework in composite generation and transmission expansion planning considering inherent uncertainties,” Journal of Experimental & Theoretical Artificial Intelligence., vol. 29, no. 4, pp. 717–730, Nov 2017, doi: 10.1080/0952813X.2016.1259262.
M. Habibi, V. Vahidinasab, and M. S. Sepasian, “A privacy-preserving approach to day-ahead TSO-DSO coordinated stochastic scheduling for energy and reserve,” IET Generation, Transmission & Distribution, vol. 16, no. 1, pp. 163–180, Jan. 2022, doi:10.1049/gtd2.12286.
J. Liu, Z. Tang, P. P. Zeng, Y. Li, and Q. Wu, “Distributed adaptive expansion approach for transmission and distribution networks incorporating source-contingency-load uncertainties,” International Journal of Electrical Power & Energy Systems, vol. 136, pp. 107711, Mar 2022, doi:10.1016/j.ijepes.2021.107711.
A. Hermann, T. V. Jensen, J. Østergaard, and J. Kazempour, “A complementarity model for electric power transmission-distribution coordination under uncertainty,” European Journal of Operational Research, vol. 299, no. 1, pp. 313–329, May 2022, doi:10.1016/j.ejor.2021.08.018.
M. A. El-Meligy, M. Sharaf, and A. T. Soliman, “A coordinated scheme for transmission and distribution expansion planning: A Tri-level approach,” Electric Power Systems Research, vol. 196, pp. 107274, Jul 2021, doi:10.1016/j.epsr.2021.107274.
T. Jiang, C. Wu, R. Zhang, X. Li, H. Chen, and G. Li, “Flexibility Clearing in Joint Energy and Flexibility Markets Considering TSO-DSO Coordination,” IEEE Transactions on Smart Grid, vol. 14, pp. 1376-1387, Mar 2022, doi: 10.1109/TSG.2022.3153634.
S. I. Vagropoulos, P. N. Biskas, and A. G. Bakirtzis, “Market-based TSO-DSO coordination for enhanced flexibility services provision,” Electric Power Systems Research, vol. 208, pp. 107883, Jul 2022, doi: 10.1016/j.epsr.2022.107883.
A. Papalexopoulos, R. Frowd, and A. Birbas, “On the development of organized nodal local energy markets and a framework for the TSO-DSO coordination,” Electric Power Systems Research, vol. 189, pp. 106810, Dec 2020, doi: 10.1016/j.epsr.2020.106810.
P. Betancourt-Paulino, H. R. Chamorro, M. Soleimani, F. Gonzalez-Longatt, V. K. Sood, and W. Martinez, “On the perspective of grid architecture model with high TSO-DSO interaction,” IET Energy Systems Integration, vol. 3, no. 1, pp. 1–12, Mar 2021, doi:10.1049/esi2.12003.
M. Rossi, G. Migliavacca, G. Viganò, D. Siface, C. Madina, l. Gomez, l. Kockar, and A. Morch, “TSO-DSO coordination to acquire services from distribution grids: Simulations, cost-benefit analysis and regulatory conclusions from the SmartNet project,” Electric Power Systems Research, vol. 189, pp. 106700, Dec 2020, doi:10.1016/j.epsr.2020.106700.
A. Abdolahi, F. S. Gazijahani, A. Alizadeh, and N. T. Kalantari, “Chance-constrained CAES and DRP scheduling to maximize wind power harvesting in congested transmission systems considering operational flexibility,” Sustainable Cities and Society, vol. 51, pp. 101792, Nov 2019, doi:10.1016/j.scs.2019.101792.
E. Dehnavi, F. Aminifar, and S. Afsharnia, “Congestion management through distributed generations and energy storage systems,” International Transactions on Electrical Energy Systems, vol. 29, no. 6, pp. e12018, Jun 2019, doi:10.1002/2050-7038.12018.
F. Sheidaei and A. Ahmarinejad, “Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs,” International Journal of Electrical Power & Energy Systems, vol. 120, pp. 106047, Sep 2020, doi:10.1016/j.ijepes.2020.106047.
S. A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M. S. Javadi, A. Esmaeel Nezhad, and J. P. S. Catalão, “A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources,” Energy, pp. 123228, Apr 2022, doi:10.1016/j.energy.2022.123228.
S. A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M. S. Javadi, A. R. Jordehi, and J. P. S. Catalão, “Energy Management in Microgrids including Smart Homes: A Multi-objective Approach,” Sustainable Cities and Society, pp. 102852, Jun 2021, doi:10.1016/j.scs.2021.102852.
F. Sheidaei, A. Ahmarinejad, M. Tabrizian, and M. Babaei, “A stochastic multi-objective optimization framework for distribution feeder reconfiguration in the presence of renewable energy sources and energy storages,” Journal of Energy Storage, vol. 40, pp. 102775, Aug 2021, doi:10.1016/j.est.2021.102775.
S. Amir Mansouri, M. S. Javadi, A. Ahmarinejad, E. Nematbakhsh, A. Zare, and J. P. S. Catalão, “A coordinated energy management framework for industrial, residential and commercial energy hubs considering demand response programs,” Sustainable Energy Technologies and Assessments, vol. 47, pp. 101376, Oct 2021, doi:10.1016/j.seta.2021.101376.
A. Singh and A. K. Bohre, “Congestion Management of System with N-1 Contingency by Optimal Placement of TCSC Using PSO,” Advances in Energy Technology, vol. 766, pp. 409-422, Jul 2022, doi: 10.1007/978-981-16-1476-7_38.
X. Wang, T. Xu, Y. Mu, Z. Wang, Y. Deng, T. Zhang, Q. Jiang, Y. Zhang, and H. Jia, “Congestion management under peer-to-peer energy trading scheme among microgrids through cooperative game,” Energy Reports, vol. 8, pp. 59–66, Apr 2022, doi: 10.1016/j.egyr.2021.11.130.
S. Ahmad, “Interactive FACTS and demand response program as an incremental welfare consensus for maximizing wind power penetration,” International Transactions on Electrical Energy Systems, Vol. 30, pp. e12526, Oct 2020, doi: 10.1002/2050-7038.12526/v1/review3.
X. Wang, T. Zhao, and A. Parisio, “Frequency regulation and congestion management by Virtual Storage Plants,” Sustainable Energy, Grids and Networks, vol. 29, pp. 100586, Mar 2022, doi: 10.1016/j.segan.2021.100586.
H. Chen, D. Wang, R. Zhang, T. Jiang, and X. Li, “Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties,” Applied Energy, vol. 308, pp. 118319, Feb 2022, doi: 10.1016/j.apenergy.2021.118319.
L. Wang, J. Kwon, N. Schulz, and Z. Zhou, “Evaluation of Aggregated EV Flexibility With TSO-DSO Coordination,” IEEE Transactions on Sustainable Energy, pp. 1–12, Oct 2022, doi: 10.1109/TSTE.2022.3190199.
M. Roustaei, A. Letafat, M. Sheikh, A. chabok, R. Sadoughi, and M. Ardeshiri, “A cost-effective voltage security constrained congestion management approach for transmission system operation improvement,” Electric Power Systems Research, vol. 203, pp. 107674, Feb 2022, doi: 10.1016/j.epsr.2021.107674.
N. Tarashandeh and A. Karimi, “Utilization of energy storage systems in congestion management of transmission networks with incentive-based approach for investors,” Journal of Energy Storage, vol. 33, pp. 102034, Jan 2021, doi: 10.1016/j.est.2020.102034.
K. Paul, “Modified grey wolf optimization approach for power system transmission line congestion management based on the influence of solar photovoltaic system,” International Journal of Energy and Environmental Engineering, Vol. 13, pp. 751-767, Jan 2022, doi: 10.1007/s40095-021-00457-2.
B. Javanmard, M. Tabrizian, M. Ansarian, and A. Ahmarinejad, “Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources,” Journal of Energy Storage, vol. 42, pp. 102971, Oct 2021, doi:10.1016/j.est.2021.102971.
A. A. Safaie, M. Alizadeh Bidgoli, and S. Javadi, “A multi-objective optimization framework for integrated electricity and natural gas networks considering smart homes in downward under uncertainties,” Energy, vol. 239, pp. 122214, Jan 2022, doi: 10.1016/j.energy.2021.122214.
Y. Chen, A. Casto, F. Wang, Q. Wang, X. Wang, and J. Wan, “Improving Large Scale Day-Ahead Security Constrained Unit Commitment Performance,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4732–4743, Nov 2016, doi: 10.1109/TPWRS.2016.2530811.
_||_