یک طرح بهینه جهت هماهنگی بازیابی بار و کاهش زاویه فاز ایستا با استفاده از الگوریتم TLBO
محورهای موضوعی :
مهندسی برق قدرت
هادی حسین پور
1
,
محمد رضا اسماعیلی
2
,
امین خدابخشیان
3
1 - دانشکده مهندسی برق، دانشگاه اصفهان، اصفهان، ایران
2 - شرکت برق منطقهای اصفهان، اصفهان، ایران
3 - دانشکده مهندسی برق، دانشگاه اصفهان، اصفهان، ایران
تاریخ دریافت : 1400/12/29
تاریخ پذیرش : 1401/03/25
تاریخ انتشار : 1401/03/01
کلید واژه:
انرژی تامین نشده,
زاویه فاز ایستا,
بازیابی سیستم قدرت,
بازیابی بار,
چکیده مقاله :
علیرغم وجود کلیه تجهیزات کنترلی و حفاظتی در یک سیستم قدرت، احتمال وقوع یک خاموشی امری اجتناب ناپذیر است. بنابراین، فرآیند بازیابی یکی از مهمترین دغدغههای بهره برداران سیستم است تا بتوانند در کمترین زمان ممکن خسارات ناشی از آن را کاهش دهند. در فرآیند بازیابی موازی ابتدا جزایر مورد نظر تشکیل شده و سپس بار هر جزیره به طور جداگانه و بصورت همزمان بازیابی میشود. در مرحله بعد، جزایر تشکیل شده با رعایت حداقل مقدار زاویه فاز ایستا با یکدیگر سنکرون شوند. برای انجام این کار، یک طرح چند هدفه بهینه در این مقاله تعریف شده است تا مسائل بازیابی بار و کاهش SPA را به طور هماهنگ بهینه سازی نماید. توابع هدف مدل پیشنهادی شامل به حداقل رساندن زاویه فاز ایستا و به حداقل رساندن انرژی تامین نشده است که با در نظر گرفتن محدودیتهای مورد نظر بهینه میشوند. در این راستا از الگوریتم بهینه سازی آموزش و یادگیری (TLBO) به عنوان تکنیک پیشنهادی استفاده شده و با برخی از الگوریتمهای هوشمند مقایسه شده است. شبیهسازیها با ایجاد ارتباط بین دو نرمافزار MATLAB و DIGSILENT انجام میشود. نتایج بهدست آمده نشاندهنده کارایی مدل پیشنهادی برای دستیابی به اهداف ذکر شده است.
چکیده انگلیسی:
One of the most important concerns for power system operators is how to execute the restoration process after having a blackout. In doing so, the parallel restoration is the most common method in which the desired islands are first formed and then the load of each section is restored separately at the same time. In the next step, the islands must be synchronized with having a minimum standing phase angle (SPA) between them. To do this, an optimal multi-objective scheme is defined in this paper in order to coordinate both load restoration and SPA reduction problems. The objective functions of the proposed model are the minimization of the static phase angle and the energy not supplied in which the desired constraints are also considered. For optimization process the teaching and learning optimization algorithm (TLBO) is used as a proposed technique and compared with some other intelligent algorithms. The simulations are performed by creating a connection between MATLAB software and DIGSILENT. The results obtained on the IEEE 39-bus power system show the efficiency of the proposed model.
منابع و مأخذ:
X. Zhou, H. Wang, Y. Ma, and Z. Gao, “research on power system restoration based on multi-agent systems,” Chinese Control and Decision Conference (CCDC), pp. 4955–4960, 2018, doi: 10.1109/CCDC.2018.8407989.
M. Adibi and L. Fink, “Power system restoration planning,” IEEE Transactions on Power Systems, vol. 9, no.1, pp. 22–28, 1994, doi: 10.1109/59.317561.
J. Quirós-Tortós, P. Wall, L. Ding, and V. Terzija, “Determination of sectionalising strategies for parallel power system restoration: A spectral clustering-based methodology,” Electric Power Systems research, vol. 116, pp. 381–390, 2104, doi: 10.1016/j.epsr.2014.07.005.
A. A. Mota, L. T. M. Mota, and A. Morelato, “Visualization of power system restoration plans using CPM/PERT graphs,” IEEE Transactions on Power Systems, vol. 22, pp. 1322–1329, 2007, doi: 10.1109/TPWRS.2007.901118.
H. Qu, M. Yin, and S. Lin, “Load restoration optimization during last stage of network reconfiguration,” in 2014 China International Conference on Electricity Distribution (CICED), pp. 1075–7079, 2014, doi: 10.1109/CICED.2014.6991870.
R. B. Duffey and T. Ha, “The probability and timing of power system restoration,” IEEE Transactions on power Systems, vol. 28, no.i, pp. 3–9, 2012, doi: 10.1109/TPWRS.2012.2203832.
V. Vittal, “Consequence and impact of electric utility industry restructuring on transient stability and small-signal stability analysis,” Proceedings of the IEEE, vol. 88, no.2, pp. 196–207, 2000, doi: 10.1109/5.823998.
M. Kheradmandi and M. Ehsan, “Dynamic analysis of transmission line connection in restoration of interconnected power systems,” in Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513), pp. 1624–1624 2004, doi: 10.1109/CCECE.2004.1349720.
M. Adibi, “An Approach to Standing Phase Angle Reduction,” IEEE Transactions on Power Systems, vol. 9, no.1, pp. 470–478, 2000, doi: 10.1109/59.317576.
D. Hazarika and A. Sinha, “Standing phase angle reduction for power system restoration," IEEE Proceedings-Generation, Transmission and Distribution,” vol. 145, pp. 82–88, 1998, doi: 10.1049/ip-gtd:19981657.
H. Ye and Y. Liu, “A new method for standing phase angle reduction in system restoration by incorporating load pickup as a control means,” International Journal of Electrical Power & Energy Systems, vol. 53, pp. 664–674, 2013, doi: 10.1016/j.ijepes.2013.05.039.
A. Ketabi, A. Ranjbar, and R. Feuillet, “New approach to standing phase angle reduction for power system restoration,” European transactions on electrical power, vol. 12, no.4, pp. 301–307, 2002., doi: 10.1002/etep.4450120408.
S. Shahidehpour and H. Yamin, “A technique for the standing phase-angle reduction in power system restoration,” Electric Power Components and Systems, vol. 33, no. 3, pp. 377–286, 2004, doi: 10.1080/15325000590474393.
M. Kheradmandi and R. Feuillet, “Using voltage control for reducing standing phase angle in power system restoration,” Electric Power Systems research, vol. 146, pp. 9–16, 2017, doi: 10.1016/j.epsr.2017.01.006.
E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Perez, and C. Angeles-Camacho, “FACTS: modelling and simulation in power networks,” John Wiley & Sons, 2004.
D. Hazarika and S. Dey, “Investigating the Use of UPFC Device for Reduction of SPA in a Power System," Journal of The Institution of Engineers (India): Series B,” vol. 99, pp. 479–491, 2018, doi: 10.1007/s40031-018-0338-4.
D. P. Kothari and I. Nagrath, “Modern power system analysis,” Tata McGraw-Hill Education, 2003.
F. Qiu and P. Li, “An integrated approach for power system restoration planning,” Proceedings of the IEEE, vol. 105, no.7, pp. 1234–1252, 2017, doi: 10.1109/JPROC.2017.2696564.
A. Khodabakhshian, M. R. Esmaili, R. a. Hooshmand, and P. Siano, “Power system observability enhancement for parallel restoration of subsystems considering renewable energy resources,” International Transactions on Electrical Energy Systems, vol. 30, no. 4, p.p. 1–19 ,2019, doi: 10.1002/2050-7038.12303.
M. R. Esmaili, A. Khodabakhshian, R. a. Hooshmand, and P. Siano, “A new coordinated design of sectionalizing scheme and load restoration process considering reliability of transmission system,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 23–37, 2018, doi: 10.1016/j.ijepes.2018.04.017.
G. Lambert-Torres, H. Martins, M. Coutinho, C. Salomon, and F. Vieira, “Particle swarm optimization applied to system restoration,” in 2009 IEEE Bucharest Power Tech, pp. 1–6, 2009, doi: 10.1109/PTC.2009.5282090.
R. Yuan, J. Ling, Z. Zhang, Y. Ruan, and Y. Sheng, “A genetic algorithm method for standing phase angle reduction in power system restoration,” IEEE PES General Meeting, pp. 1–6, 2010, doi: 10.1109/PES.2010.5589852.
A. M. El-Zonkoly, “Renewable energy sources for complete optimal power system black-start restoration,” IET Generation, Transmission & Distribution, vol. 9, no.6, pp. 531–539, 2014, doi: 10.1049/iet-gtd.2014.0646.
_||_