موجبر نواری فلز-عایق-فلز عمودی مبتنی بر ساختار سیلیکون بر روی عایق
محورهای موضوعی : مهندسی برق الکترونیکوحید صادق زاده مرقی 1 , محمود نیکو فرد 2 , مهدی اسلامی 3 , سید حسین پیشگر کومله 4
1 - دانشکده مهندسی برق، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان، کاشان، ایران
3 - دانشکده مهندسی برق، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشکده مهندسی برق، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تمرکز در ابعاد نانو, مدارهای یکپارچه فوتونیک, سیلیکون بر روی عایق (SOI), موجبر نواری فلز-عایق-فلز (MIM) عمودی, پلاسمونیک, خواص انتشار,
چکیده مقاله :
این مقاله یک موجبر پلاسمونیک نواری بسیار فشرده جدید فلز-عایق-فلز (MIM) بر روی ساختار سیلیکون بر روی عایق (SOI) پیشنهاد میکند. ساختار موجبر میتواند بهطور مؤثر پلاریتون پلاسمون های سطحی (SPPs) را در یک لایه نازک SiO2 با ضریب شکست کم در پنجره طولموج نوری 1550 نانومتر منتشر کند. پارامترهای اصلی شامل، ضریب شکست مؤثر، طول انتشار، ضریب تحدید و ناحیه حالت مؤثر برای موجبر پیشنهادی با پهناهای مختلف موجبر محاسبه شده است. نتایج شبیهسازی با موجبر پلاسمونیک MIM افقی قابلمقایسه می باشد. ساختار پیشنهادی میتواند بهصورت یکپارچه با ادوات مبتنی برSOI عایقی مرسوم و پلاسمونیکی ترکیبی مجتمع سازی شده و پتانسیل متمرکز کردن نور، در ابعاد نانو را دارد.
This paper proposes a new ultra-compact strip metal-insulator-metal (MIM) plasmonic waveguide on a silicon-on-insulator (SOI) platform. The waveguide structure can efficiently propagate surface plasmon polaritons (SPPs) within a thin low-index SiO2 layer at an optical wavelength window of 1550 nm. The main parameters of effective refractive index, propagation length, confinement factor, and effective mode area were determined for the proposed waveguide with different waveguide widths. The simulation results were comparable with the in-plane MIM plasmonic waveguide. The proposed layer stack could be monolithically integrated with conventional and hybrid plasmonic SOI-based devices and has the potential of focusing light to nanoscale dimensions.
[1] S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys., vol. 98, no. 1, p. 10, 2005, doi: 10.1063/1.1951057.
[2] S. A. Maier et al., “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater., vol. 2, no. 4, pp. 229–232, 2003, doi: 10.1038/nmat852.
[3] E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Light. Technol., vol. 25, no. 9, pp. 2547-2562, 2007, doi: 10.1109/JLT.2007.903558.
[4] M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “quantum plasmonics” Nat. Phys., vol. 9, no. 6, pp. 1–55, 2013.
[5] S. A. Maier et al., “Plasmonics—a route to nanoscale optical devices,” Adv. Mater., vol. 13, no. 19, pp. 1501–1505, 2001, doi: 10.1002/adma.200390134.
[6] H. Yan et al., "Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol., vol. 7, no. 5, pp. 330-334, 2012, doi: 10.1038/NNANO.2012.59.
[7] I. Malkiel et al., “Deep learning for the design of photonic structures,” Nat. Photonics, pp. 1–14, 2020, doi: 10.1038/s41566-020-0685-y.
[8] H. Mathuriya, R. Zafar, and G. Singh, "Plasmonic Grating-Based Refractive Index Sensor with High Sensitivity, ” IETE J. Res., no. May, pp. 1–7, 2021, doi: 10.1080/03772063.2021.1925600.
[9] M. Khorshidi, G. Dadashzadeh, and S. Zafari, "Periodic Metallic Stepped Slits for Entire Transmission of Optical Wave and Efficient Transmission of Terahertz Wave, ” IETE J.Res., vol. 68, no. 3, pp. 1–10, 2019, doi: 10.1080/03772063.2019.1689187.
[10] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," JOSA A, vol. 21, no. 12, pp. 2442-2446, 2004.
[11] V. Shaidiuk, S. G. Menabde, and N. Park, "Effect of structural asymmetry on three layer plasmonic waveguide properties," JOSA B, vol. 33, no. 5, pp. 963-970, 2016, doi: 10.1364/JOSAB.33.000963.
[12] P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, "Structural slow waves: parallels between photonic crystals and plasmonic waveguides," ACS photonics, vol. 6, no. 1, pp. 4-17, 2018, doi: 10.1021/acsphotonics.8b01337.
[13] Q. Li and M. Qiu, "Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Express,, vol. 18, no. 15, pp. 15531-15543, 2010, doi: 10.1364/oe.18.015531
[14] M. Nikoufard, M. K. Alamouti, and S. Pourgholi, "Multimode interference power-splitter using InP-based deeply etched hybrid plasmonic waveguide," IEEE Trans. Nanotechnol., vol. 16, no. 3, pp. 477-483, 2017, doi: 10.1109/TNANO.2017.2688397.
[15] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Physical Review B, vol. 73, no. 3, p. 035407, 2006, , doi: 10.1103/PhysRevB.73.035407.
[16] N.-N. Feng, M. L. Brongersma, and L. Dal Negro, "Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1550nm," IEEE J. Quantum Electron, vol. 43, no. 6, pp. 479-485, 2007, doi: 10.1109/JQE.2007.897913.
[17] G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Light. Technol., vol. 25, no. 9, pp. 2511-2521, 2007, doi: 10.1109/JLT.2007.903544.
[18] L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Optics letters, vol. 31, no. 14, pp. 2133-2135, 2006, doi: 0146-9592/06/142133-3.
[19] M. L. Brongersma et al., “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chinese Opt. Lett., vol. 7, no. 4, pp. 302–308, 2009, doi: 10.3788/COL20090704. 0302.1
[20] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, vol. 440, no. 7083, pp. 508-511, 2006, doi: 10.1038/nature04594.
[21] Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, "All-optical logic gates based on nanoscale plasmonic slot waveguides," Nano lett., vol. 12, no. 11, pp. 5784-5790, 2012, doi: 10.1021/nl303095s.
[22] I. D. Rukhlenko, A. Pannipitiya, and M. Premaratne, "Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides," Optics letters, vol. 36, no. 17, pp. 3374-3376, 2011, doi: 10.1364/ol.36.003374.
[23] J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano lett., vol. 6, no. 9, pp. 1928-1932, 2006, doi: 10.1021/nl0610477.
[24] H. Choo et al., "Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, vol. 6, no. 12, pp. 838-844, 2012, doi: 10.1038/NPHOTON.2012.277.
[25] K. Wongpanya, T. Kasaya, H. T. Miyazaki, H. Oosato, Y. Sugimoto, and W. Pijitrojana, "Mass-productive fabrication of a metal–insulator–metal plasmon waveguide with a linear taper for nanofocusing," Appl. Phys B, vol. 122, no. 9, pp. 1-7, 2016, doi: 10.1007/s00340-016-6515-8.
[26] M. Saad-Bin-Alam, M. I. Khalil, A. Rahman, and A. M. Chowdhury, "Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications," IEEE Photonics Technol Lett., vol. 27, no. 10, pp. 1092-1095, 2015, doi: 10.1109/LPT.2015.2407867.
[27] M. Nikoufard, A. Nourmohammadi, and S. Esmaeili, "Hybrid plasmonic nanoantenna with the capability of monolithic integration with laser and photodetector on InP substrate," IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 3-8, 2018, doi: 10.1109/TAP.2017.2767623.
[28] C. Koos, L. Jacome, and C. Poulton, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express, vol. 15, no. 10, pp. 5976–5990, 2007.
[29] J. T. Robinson, K. Preston, O. Painter, and M. Lipson, "First-principle derivation of gain in high-index-contrast waveguides," Opt. Express,, vol. 16, no. 21, pp. 16659-16669, 2008.
_||_