تأثیر استفاده مجزا و تلفیقی پروبیوتیک Pediococcus acidilactici و پربیوتیک Raffinos بر شاخصهای ایمنی موکوس و هیستو مورفولوژی روده در ماهیان طلایی(Carassius auratus)
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیدل ارا سپهرفر 1 , سید حسین حسینی فر 2 , علی جافر نوده 3
1 - گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه.ارومیه. ایران
2 - گروه شیلات، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان.ایران.
3 - شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.گرگان. ایران.
کلید واژه: ماهی طلایی, ایمنی موکوسی, هیستو مورفولوژی,
چکیده مقاله :
زمینه و هدف: موکوس و ترکیبات آن، اولین خط دفاعی در برابر پاتوژنها و یکی از بخشهای مهم سیستم ایمنی در ماهیان است. این تحقیق با هدف بررسی اثرات مجزا و تلفیقی پروبیوتیک acidilacticiPediococcus و پربیوتیک Raffinos درجیره غذایی بر شاخصهای ایمنی موکوس و هیستو مورفولوژی روده در ماهی طلایی(Carassius auratus) انجام گرفت. روش کار:180 قطعه ماهی با میانگین وزنی ۱۸/۰± ۳/۲۶ گرم، پس از ۲ هفته سازگاری با شرایط آزمایشگاه در ۴ تیمار و ۳ تکرار شامل: جیره تجاری(گروه شاهد)، غذای تجاری مکمل شده به P. acidilactici به میزان ۹/۰ گرم بر کیلوگرم(تیمار 2)، غذای حاوی Raffinos به میزان ۱۰ گرم بر کیلوگرم(تیمار 3) و غذای تجاری حاوی ترکیبی از پروبیوتیک و پربیوتیک به میزان ۹/۰ و ۱۰ گرم بر کیلوگرم(تیمار 4) بهطور تصادفی تقسیم شدند. در پایان دوره آزمایش(60 روز)، سنجش آنزیم لیزوزیم به روش کدورت سنجی با دستگاه اسپکتروفتومتر و ایمونوگلبولین کـل از طریق سنجش میزان پروتئین سرم قبل و بعد از افزودن پلیاتیلن گلیکول به نمونه و میزان آنزیم آلکالین فسفاتاز قلیایی موکوس به وسیله کیتهای شرکت پارس آزمون و با دستگاه اسپکتروفتومتر محاسبه گردید، هم چنین آزمایشات هیستو مورفولوژی روده به روش بافتشناسی کلاسیک و رنگآمیزی هماتوکسیلین- ائوزین انجام شد. یافتهها: نتایج حاصل هیچگونه اختلاف معنیداری در ارتفاع و قطر ویلیها نشان نداد(۰۵/۰<P). بیشترین میزان فعالیت آنزیم لیزوزیم موکوس، ایمونوگلوبولین، پروتئین محلول و آلکالین فسفاتاز در تیمار سین بیوتیک مشاهده شد با این حال در تیمارهای مختلف این اختلاف معنیدار نبود (۰۵/۰P>). نتیجهگیری: غذای تجاری غنیشده با سینبیوتیک موجب بهبود شاخصهای ایمنی موکوس و هیستو مورفولوژی روده در ماهیان طلایی بود.
-جافرنوده، ع. ۱۳۹۵. بررسی خواص سینرژیستی برخی اسیدهای آلی با پروبیوتیک لاکتوباسیلوس کازئی (casei Lactobacillus) در پرورش بچه ماهیان انگشت قد قزلآلای رنگینکمان(mykiss Oncorhynchus). رساله دکتری، دانشگاه ارومیه. ۱۵۰ صفحه.
2-سپهرفر، د.، سروی مغانلو، ک.، حسینی س.ح.، پاک نژاد، ح.، جافرنوده، ع. 1397. تأثیر استفاده مجزا و تلفیقی پروبیوتیک acidilactici Pediococcus و پودر Agaricus bisporus بر شاخصهای ایمنی موکوس و هیستومورفولوژی روده در بچه ماهیان کپور معمولی (Cyprinuscarpio). فصلنامه علمی پژوهشی فیزیولوژی و تکوین جانوری، شماره پیاپی 41، جلد 11، شماره 2، صفحه 27 تا 36.
4.Anbarasu, K., Chandran, M. (2001). Effect of ascorbic acid on the immune response of the catfish, Mystusgulio (Hamilton), to different bacterins of Aeromonas hydrophila. Fish & Shellfish Immunology, 11; 347-355.
4.Carnevali, O., de Vivo, L., Sulpizio, R., etal. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258; 430-438.
5.Daniels, C.L., Merrifield, D.L., Boothroyd, D.P., Davies, S.J., Factor, J.R., Arnold, K.E. (2010). Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture, 304; 49-57.
6.De Vrese, M., Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. In: Food biotechnology.Springer, pp;1-66.
7.Dimitroglou, A., Merrifield, D.L., Carnevali, O., et al. (2011). Microbial manipulations to improve fish health and production–a Mediterranean perspective. Fish & Shellfish Immunology, 30; 1-16.
8.Domeneghini, C., Arrighi, S., Radaelli, G., Bosi, G., Mascarello, F. (1999). Morphological and histochemical peculiarities of the gut in the white sturgeon, Acipenser transmontanus. European Journal of Histochemistry: EJH, 43; 135-145.
9.FAO. (2014). Aquaculture department. The State of World Fisheries and Aquaculture Food and Agriculture Organization of the United Nations, Rome, p.; 243.
10.Ferguson, R., Merrifield, D.L., Harper, G.M. (2010). The effect of Pediococcus acidilactici on the gut microbiota and immune status of on‐growing red tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 109; 851-862.
11.Hamilton-Miller, J. (2004). Probiotics and prebiotics in the elderly. Postgraduate Medical Journal 80; 447-451.
12.Hoseinifar, S.H., Esteban, M.Á., Cuesta, A., Sun, Y.-Z. (2015) Prebiotics and fish immune response: a review of current knowledge and future perspectives. Reviews in Fisheries Science & Aquaculture, 23; 315-328.
13.Hoseinifar, S.H., Khalili, M., Rostami, H.K., Esteban, M.Á. (2013). Dietary galacto oligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish & Shellfish Immunology, 35; 1416-1420.
14.Hoseinifar, S.H., Soleimani, N., Ringø, E. (2014). Effects of dietary fructo-oligosaccharide supplementation on the growth performance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. British Journal of Nutrition, 112; 1296-1302.
15.Hussein, E.E.S., Dabrowski, K., El‐Saidy, D.M.S.D., Lee, B.J. (2014). Effect of dietary phosphorus supplementation on utilization of algae in the grow‐out diet of Nile tilapia Oreochromis niloticus. Aquaculture Research, 45;1533-1544.
16.Irianto, A., Austin, B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchusmykiss (Walbaum). Journal of Fish Diseases, 25; 333-342.
17.Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive healthcare. Animal Feed Science and Technology, 173; 111-133.
18.Kozarić, Z., Kužir, S., Petrinec, Z., Gjurčević, E., Božić, M. (2008). The development of the digestive tract in larval European catfish (Silurus glanis L.). Anatomia, Histologia, Embryologia, 37; 141-1.
19.Kruger, N.J. (1994). The Bradford method for protein quantitation. Basic Protein And Peptide Protocols, 9-15.
20.Lahtinen, S.J., Forssten, S., Aakko, J. (2012). Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of Fecal lactobacilli and Clostridium difficile in the elderly. Age, 34; 133-143.
21.McNeilly, T.N., Naylor, S.W., Mahajan, A. (2008). Escherichia coli O157: H7 colonization in cattle following systemic and mucosal immunization with purified H7 flagellin. Infection and Immunity, 76; 2594-2602.
22.Merrifield, D., Bradley, G., Harper, G., Baker, R., Munn, C., Davies, S. (2011). Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Nutrition, 17;73-79.
23.Nayak, S. (2010). Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology, 29; 2-14.
24.Neira, F.J., Keane, J.P., Lyle, J.M., Tracey, S.R. (2008). Development of eggs and larvae of Emmelichthy snitidus (Percoidei: Emmelichthyidae) in south-eastern Australia, including a temperature-dependent egg incubation model. Estuarine, Coastal and Shelf Science, 79; 35-44.
25.Ogawa, T., Ishii, C., Kagawa, D., Muramoto, K., Kamiya, H. (1999). Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster). Bioscience, Biotechnology, and Biochemistry, 63; 1203-1208.
26.Panigrahi, A., Kiron, V., Kobayashi, T., Puangkaew, J., Satoh, S., Sugita, H. (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillusrhamnosus JCM 1136. VeterinaryImmunology and Immunopathology, 102; 379-388.
27.Panigrahi, A., Kiron, V., Puangkaew, J., Kobayashi, T., Satoh, S., Sugita, H. (2005). The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchu smykiss. Aquaculture, 243(24); 251-254.
28.Papina, M., Meziane, T., Van Woesik, R. (2003). Symbiotic zooxanthellae provide the host-coral Montipora digitata with poly unsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135; 533-537.
29.Parracho, H., McCartney, A.L., Gibson, G.R. (2007). Probiotics and prebiotics in infant nutrition. Proceedings of the Nutrition Society, 66; 405-411.
30.Ringø, E., Bendiksen, H., Gausen, S., Sundsfjord, A., Olsen, R. (1998). The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic Charr, Salvelinus alpinus (L.). Journal of Applied Microbiology, 85; 855-864.
31.Ringø, E., Dimitroglou, A., Hoseinifar, S.H., Davies, S.J. (2014). Prebiotics in finfish: an update. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 360-400.
32.Robertson, P., O'Dowd, C., Burrells, C., Williams, P., Austin, B. (2000). Use of Carno bacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture, 185; 235-243.
33.Roosta, Z., Hoseinifar, S.H. (2016). The effects of crowding stress on some epidermal mucus immune parameters, growth performance and survival rate of tiger barb (Pentius tetrazona). Aquaculture Research, 47; 1682-1686.
34.Ross, N.W., Firth, K.J., Wang, A., Burka, J.F., Johnson, S.C. (2000). Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Diseases of Aquatic Organisms, 41; 43-51.
35.Rurangwa, E., Laranja, J., Van Houdt, R. (2009). Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono‐cultures in vitro. Journal of Applied Microbiology,106;932-940.
36.Sheikhzadeh, N., Heidarieh, M., Pashaki, A.K., Nofouzi, K., Farshbafi, M.A., Akbari, M. (2012). Hilyses®, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 32; 1083-1087.
37.Siwicki, A.a.A. (1993). Non specific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and monocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. Fish Diseases Diagnosis and Prevention Methods.
38.Subramanian, S., Ross, N., MacKinnon, S. (2008). Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.). Fish & Shellfish Immunology, 25; 625-632.
39.Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64; 655-671.
40.Villamil, L., Figueras, A., Planas, M., Novoa, B. (2003). Control of vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture, 219; 43-56.
.