بررسی ایمنی زایی کونژوگه آلژینات تیپ 6 استرپتوکوکوس پنومونیه و توکسوئید دیفتری در مدل موش BALB/C
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیبهرام صنعتی منفرد 1 , رضا شاپوری 2
1 - گروه میکروبیولوژی ، دانشکده علوم پایه، واحد زنجان، دانشگاه آزاد اسلامی ، زنجان ، ایران
2 - استادیارگروه میکروبیولوژی دانشکده علوم پایه واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
کلید واژه: کونژوگاسیون, توکسوئید دیفتری, کپسول پلیساکاریدی تیپVI, میکروپارتیکل آلژیناتی, استرپتوکوکوسپنومونیه,
چکیده مقاله :
زمینه و هدف: استرپتوکوکوس پنومونیه یکی از باکتری های پاتوژن عفونی در انسان می باشدکه عامل اصلی بیماری پنومونی است و عفونت های دیگری مانند سینوزیت، اووتیت، آندوکاردیت، باکتریمی، سپتی سمی و مننژیت را موجب می شود. در دستگاه تنفسی افراد مستعد مانند بیماران دچار نقص ایمنی و ایدز کلونیزه شده و عفونت های مزمن و مقاوم به درمان ایجاد می کند. هدف مطالعه حاضر، تهیه واکسنی با ترکیب آنتی ژنی کونژوگه و با قابلیت القاء آنتی بادی و ایمنی خاطره ای به صورت تجربی بر روی تیپ 6 استرپتوکوکوس پنومونیه در مدل موش BALB/C است.مواد و روش ها: سویه استرپتوکوکوس پنومونیه تیپ 6 در مولر هینتون آگار کشت شده و در انتهای فاز لگاریتمی رشد، توسط NaOH یک نرمال استخراج و تغلیظ گردید. کپسول پلی ساکاریدی با استفاده از (ADH) آدپیـک اسیـد دی هیدرازید و EDAC به توکسوئید دیفتری متصل شد. پس از کروماتوگرافی با مخلوط کردن کونژوگه (CPS-DT) کپسول پلی ساکاریدی با توکسوئید دیفتری و محلول آلژینات آنتی ژن موردنظر آماده گردید. آنتی ژن های آماده شده به 4 گروه 15 تایی از موش های BALB/c به صورت داخل صفاقی با فواصل دوهفته ای تزریق شد. در نمونه های سرمی پاسخ های آنتی بادی به روش الایزا اندازه گیری شد.نتایج: طبق نتایج تست الایزا تیتر IgG تام از 315 به 1680 رسید. هم چنین تیتر آنتی بادی IgM و IgA به ترتیب از 90 به 610 و 18 به 28 افزایش یافت. آنتی بادی های سرمی گروه واکسینه شده با(ALG-DT) آلژینات توکسوئید دیفتری پس از هر بار تزریق افزایش معنی داری از لحاظ آماری داشتندو میزان تیتر IgG تام، IgM و IgA تولید شده علیه آلژینات در گروه های واکسینه با کونژوگه نسبت به آلژینات خاص در سه تزریق افزایش نشان داد.نتیجه گیری: نتایج به دست آمده برای آنتی بادی های فوق به صورتCPS-DT > CPS > DT بود که تیتر آنتی بادی بر علیه DT-CPS در IgG بیشتر از بقیه آنتی بادی ها بود که این نتایج نشان می دهد میکروپارتیکل آلژیناتی کپسول پلی ساکاریدی استرپتوکوکوس پنومونیه در فرم کونژوگه با توکسوئید دیفتری موجب افزایش آنتی بادی ها می شود. افزایش تیتر آنتی بادی در گروه های واکسینه احتمالا موجب فعال شدن سلول های T و ایجاد خاطره ایمنی شود. بنابراین کونژوگه آلژینات و توکسوئید دیفتری می تواند کاندید مناسبی به منظور تهیه واکسن باشد.
Inroduction & Objective: Streptococcus pneumoniae is one of the infectious pathogenic bacteria in humans. It is considered the cause of pneumonia. It is colonized in the respiratory system of susceptible people such as immunocompromised and AIDS patients and causes chronic and treatment-resistant infections. The aim of the present study is to prepare a vaccine with a conjugated antigen combination and with the ability to induce antibodies and memory immunity experimentally against Streptococcus pneumoniae type 6 in the BALB/C mouse model. Material and Methods: Streptococcus pneumoniae type 6 strain was cultured in Mueller Hinton agar and at the end of the logarithmic phase of growth, it was extracted and concentrated by normal NaOH. The polysaccharide capsule was attached to diphtheria toxoid using (ADH) adipic acid dihydrazide and EDAC. After chromatography, prepare by mixing the polysaccharide capsule conjugate (CPS-DT) with diphtheria toxoid and alginate solution of the desired antigen. The prepared antigens were injected into 4 groups of 15 mice intraperitoneally with two-week intervals. In serum samples, antibody responses were measured by ELISA method. Results: According to the results of the ELISA test, total IgG titer increased from 315 to 1680. Also, IgM and IgA antibody titers increased from 90 to 610 and 18 to 28, respectively. The serum antibodies of the group vaccinated with diphtheria toxoid alginate (ALG-DT) increased statistically significantly after each injection. So that the titer of total IgG, IgM and IgA produced against alginate in the groups vaccinated with conjugate showed a significant increase compared to specific alginate in three injections. Conclusion: The results obtained for the above antibodies were CPS-DT > CPS > DT, and the antibody titer against DT-CPS in IgG was higher than other antibodies, which shows that microparticles Alginate polysaccharide capsule of Streptococcus pneumoniae in conjugated form with diphtheria toxoid increases antibodies. The increase in antibody titer in the groups vaccinated with alginate conjugate indicates the activation of T cells and the creation of immune memory. Therefore, the conjugate of alginate and diphtheria toxoid can be a suitable candidate for preparing a vaccine. The results of the antibody titer obtained against Micro CPS-DT in the groups were IgG>IgM>IgA.
1.Adib Far, Medical Microbiology, 1383, Mehr Publications, pp. 95-97 [Persian].
2.Jaklik, Wilt, Amos, Wilfert, Zinser Microbiology, 2013, Ayge Publications, Volume II, pp. 92-77 [Persian].
3.Jawetz,Melnick&Adelberg . Medical Microbiology, 22nd, 2001; 342-346.
4.Lambertsen L, Kerrn MB. Test of a novel Streptococcus pneumoniae serotype 6C type specific polyclonal antiserum (factor antiserum 6d) and characterisation of serotype 6C isolates in Denmark. BMC Infectious Diseases. 2010 Dec;10:1-7.
5.Ghaderinia P, Shapouri R. Assessment of immunogenicity of alginate microparticle containing Brucella melitensis 16M oligo polysaccharide tetanus toxoid conjugate in mouse. Banat's Journal of Biotechnology. 2017 Jul 1;8(16):83-92.
6.Lesinski GB, Westerink J. Vaccines against polysaccharide antigens. Current Drug Targets-Infectious Disorders. 2001 Nov 1;1(3):325-34..
7.Rådström P, Bäckman A, Qian NY, Kragsbjerg P, Påhlson C, Olcén P. Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. Journal of clinical microbiology. 1994 Nov;32(11):2738-44.
8.Baker CJ, Edwards MS. Group B streptococcal conjugate vaccines. Archives of disease in childhood. 2003 May 1;88(5):375-8.
9.Cohen N, Stolarsky-Bennun M, Amir-Kroll H, Margalit R, Nussbaum G, et-al, Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells: TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive. The Journal of Immunology. 2008 Feb 15;180(4):2409-18.
10.Tian H, Groner A, Boes M, Pirofski LA. Pneumococcal capsular polysaccharide vaccine-mediated protection against serotype 3 Streptococcus pneumoniae in immunodeficient mice. Infection and immunity. 2007 Apr;75(4):1643-50.
11.Trück J, Lazarus R, Jonsdottir I, Klugman KP, Pollard AJ. Pneumococcal polysaccharide vaccine efficacy and routine use of conjugate vaccines in infants: there is no need for a vaccine program in older adults at present. Clinical infectious diseases. 2012 Dec 1;55(11):1577-9.
12.Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. Group B Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization. Infection and immunity. 2001 Jan 1;69(1):297-306.
13.Yun KW, Choi EH, Lee HJ, Kang JH, Kim KH, Kim DS, Kim YJ, Eun BW, Oh SH, Cho HK, Hong YJ. Genetic structures of invasive Streptococcus pneumoniae isolates from Korean children obtained between 1995 and 2013. BMC infectious diseases. 2018 Dec;18(1):1-1.
14.Bastiaens GJ, Cremers AJ, Coolen JP, Nillesen MT, Boeree MJ, Hopman J, Wertheim HF. Nosocomial outbreak of multi-resistant Streptococcus pneumoniae serotype 15A in a centre for chronic pulmonary diseases. Antimicrobial Resistance & Infection Control. 2018 Dec;7(1):1-4.
15.Baek JY, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching. International Journal of Medical Microbiology. 2018 Dec 1;308(8):986-9.
16.Arushothy R, Ahmad N, Amran F, Hashim R, Samsuddin N, Che Azih CR. Draft genome sequence of a highly resistant Streptococcus pneumoniae Serotype 15A strain isolated from blood. Genome announcements. 2018 Apr 19;6(16):e00167-18.
17.Baek JY, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching. International Journal of Medical Microbiology. 2018 Dec 1;308(8):986-9.
18.Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Compositional Data Analysis of 16S rRNA Gene Sequencing Results from Hospital Airborne Microbiome Samples. International Journal of Environmental Research and Public Health. 2022 Aug 16;19(16):10107.
19.Büyükcam A, Güdücüoğlu H, Karaman K, Gürbüz V, Aliyev E, Kara A, Ceyhan M. Invasive pneumococcal infection due to serotype 15A after the pneumococcal conjugate vaccine implementation in Turkey. Human Vaccines & Immunotherapeutics. 2017 Aug 3;13(8):1892-4.
20.Watkins RR, Holubar M, David MZ. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrobial agents and chemotherapy. 2019 Dec;63(12):e01216-19.
21.Durmort C, Brown J. Pneumococcal ABC transporters and their role in physiology and multidrug resistance. Streptococcus pneumoniae molecular mechanisms of host-pathogen interactions. 2015:181-202.
22.Shi W, Yao K, He M, Yu S, Yang Y. Population biology of 225 serogroup 6 Streptococcus pneumoniae isolates collected in China. BMC Infectious Diseases. 2014 Dec; 14:1-7.
23.Chhibber S, Rani M, Yadav V. Immunoprotective potential of polysaccharide-tetanus toxoid conjugate in Klebsiella pneumoniae induced lobar pneumonia in rats.
24.Cohen D, Meron-Sudai S, Bialik A, Asato V, Goren S, Ariel-Cohen O, Reizis A, Hochberg A, Ashkenazi S. Serum IgG antibodies to Shigella lipopolysaccharide antigens–a correlate of protection against shigellosis. Human vaccines & immunotherapeutics. 2019 Jun 3;15(6):1401-8.
25.Safari Zanjani L, Shapoury R, Dezfulian M, Mahdavi M, Shafieeardestani M. Preparation of PLGA (poly lactic-co-glycolic acid) nanoparticles Containing Pseudomonas aeruginosa Alginate, LPS and Exotoxin A as a Nano-vaccine. Biological Journal of Microorganism. 2018 Jun 22;7(26):11-27.
26.Shapouri R. Evaluation of Immunogenicity of PLGA-Proteus mirabilis Detoxified Lipopolysaccharide Conjugate Against Urinary Tract Infection in Mice.
27.Safari Zanjani L, Shapouri R, Dezfulian M, Mahdavi M, Shafiee Ardestani M. Exotoxin A-PLGA nanoconjugate vaccine against Pseudomonas aeruginosa infection: protectivity in murine model. World Journal of Microbiology and Biotechnology. 2019 Jun; 35:1-9.
28.Theilacker C, Coleman FT, Mueschenborn S, Llosa N, Grout M, Pier GB. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infection and immunity. 2003 Jul;71(7):3875-84.
29.Abu-Baker NF, Masoud H. Synthesis, characterization, and immunological properties of LPS-based vaccines composed of O-polysaccharides conjugated with recombinant exoprotein a from Pseudomonas aeruginosa. Advances in Microbiology. 2016;6(04):332.
30.Najafzadeh F, Shapouri R, Rahnema M, Azar SR, Kianmehr A. Pseudomonas aeruginosa PAO-1 lipopolysaccharide-diphtheria toxoid conjugate vaccine: preparation, characterization and immunogenicity. Jundishapur Journal of Microbiology. 2015 Jun 1;8(6).
31.Najafian M. Immunological evaluation of Pseudomonas aeruginosa alginate conjugated to tetanus toxoid in mice as a vaccine candidate. M. Sc. Zanjan Branch. Islamic Azad University. Iran.[In Persian]. 2011.
_||_1.Adib Far, Medical Microbiology, 1383, Mehr Publications, pp. 95-97 [Persian].
2.Jaklik, Wilt, Amos, Wilfert, Zinser Microbiology, 2013, Ayge Publications, Volume II, pp. 92-77 [Persian].
3.Jawetz,Melnick&Adelberg . Medical Microbiology, 22nd, 2001; 342-346.
4.Lambertsen L, Kerrn MB. Test of a novel Streptococcus pneumoniae serotype 6C type specific polyclonal antiserum (factor antiserum 6d) and characterisation of serotype 6C isolates in Denmark. BMC Infectious Diseases. 2010 Dec;10:1-7.
5.Ghaderinia P, Shapouri R. Assessment of immunogenicity of alginate microparticle containing Brucella melitensis 16M oligo polysaccharide tetanus toxoid conjugate in mouse. Banat's Journal of Biotechnology. 2017 Jul 1;8(16):83-92.
6.Lesinski GB, Westerink J. Vaccines against polysaccharide antigens. Current Drug Targets-Infectious Disorders. 2001 Nov 1;1(3):325-34..
7.Rådström P, Bäckman A, Qian NY, Kragsbjerg P, Påhlson C, Olcén P. Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. Journal of clinical microbiology. 1994 Nov;32(11):2738-44.
8.Baker CJ, Edwards MS. Group B streptococcal conjugate vaccines. Archives of disease in childhood. 2003 May 1;88(5):375-8.
9.Cohen N, Stolarsky-Bennun M, Amir-Kroll H, Margalit R, Nussbaum G, et-al, Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells: TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive. The Journal of Immunology. 2008 Feb 15;180(4):2409-18.
10.Tian H, Groner A, Boes M, Pirofski LA. Pneumococcal capsular polysaccharide vaccine-mediated protection against serotype 3 Streptococcus pneumoniae in immunodeficient mice. Infection and immunity. 2007 Apr;75(4):1643-50.
11.Trück J, Lazarus R, Jonsdottir I, Klugman KP, Pollard AJ. Pneumococcal polysaccharide vaccine efficacy and routine use of conjugate vaccines in infants: there is no need for a vaccine program in older adults at present. Clinical infectious diseases. 2012 Dec 1;55(11):1577-9.
12.Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. Group B Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization. Infection and immunity. 2001 Jan 1;69(1):297-306.
13.Yun KW, Choi EH, Lee HJ, Kang JH, Kim KH, Kim DS, Kim YJ, Eun BW, Oh SH, Cho HK, Hong YJ. Genetic structures of invasive Streptococcus pneumoniae isolates from Korean children obtained between 1995 and 2013. BMC infectious diseases. 2018 Dec;18(1):1-1.
14.Bastiaens GJ, Cremers AJ, Coolen JP, Nillesen MT, Boeree MJ, Hopman J, Wertheim HF. Nosocomial outbreak of multi-resistant Streptococcus pneumoniae serotype 15A in a centre for chronic pulmonary diseases. Antimicrobial Resistance & Infection Control. 2018 Dec;7(1):1-4.
15.Baek JY, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching. International Journal of Medical Microbiology. 2018 Dec 1;308(8):986-9.
16.Arushothy R, Ahmad N, Amran F, Hashim R, Samsuddin N, Che Azih CR. Draft genome sequence of a highly resistant Streptococcus pneumoniae Serotype 15A strain isolated from blood. Genome announcements. 2018 Apr 19;6(16):e00167-18.
17.Baek JY, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching. International Journal of Medical Microbiology. 2018 Dec 1;308(8):986-9.
18.Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Compositional Data Analysis of 16S rRNA Gene Sequencing Results from Hospital Airborne Microbiome Samples. International Journal of Environmental Research and Public Health. 2022 Aug 16;19(16):10107.
19.Büyükcam A, Güdücüoğlu H, Karaman K, Gürbüz V, Aliyev E, Kara A, Ceyhan M. Invasive pneumococcal infection due to serotype 15A after the pneumococcal conjugate vaccine implementation in Turkey. Human Vaccines & Immunotherapeutics. 2017 Aug 3;13(8):1892-4.
20.Watkins RR, Holubar M, David MZ. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrobial agents and chemotherapy. 2019 Dec;63(12):e01216-19.
21.Durmort C, Brown J. Pneumococcal ABC transporters and their role in physiology and multidrug resistance. Streptococcus pneumoniae molecular mechanisms of host-pathogen interactions. 2015:181-202.
22.Shi W, Yao K, He M, Yu S, Yang Y. Population biology of 225 serogroup 6 Streptococcus pneumoniae isolates collected in China. BMC Infectious Diseases. 2014 Dec; 14:1-7.
23.Chhibber S, Rani M, Yadav V. Immunoprotective potential of polysaccharide-tetanus toxoid conjugate in Klebsiella pneumoniae induced lobar pneumonia in rats.
24.Cohen D, Meron-Sudai S, Bialik A, Asato V, Goren S, Ariel-Cohen O, Reizis A, Hochberg A, Ashkenazi S. Serum IgG antibodies to Shigella lipopolysaccharide antigens–a correlate of protection against shigellosis. Human vaccines & immunotherapeutics. 2019 Jun 3;15(6):1401-8.
25.Safari Zanjani L, Shapoury R, Dezfulian M, Mahdavi M, Shafieeardestani M. Preparation of PLGA (poly lactic-co-glycolic acid) nanoparticles Containing Pseudomonas aeruginosa Alginate, LPS and Exotoxin A as a Nano-vaccine. Biological Journal of Microorganism. 2018 Jun 22;7(26):11-27.
26.Shapouri R. Evaluation of Immunogenicity of PLGA-Proteus mirabilis Detoxified Lipopolysaccharide Conjugate Against Urinary Tract Infection in Mice.
27.Safari Zanjani L, Shapouri R, Dezfulian M, Mahdavi M, Shafiee Ardestani M. Exotoxin A-PLGA nanoconjugate vaccine against Pseudomonas aeruginosa infection: protectivity in murine model. World Journal of Microbiology and Biotechnology. 2019 Jun; 35:1-9.
28.Theilacker C, Coleman FT, Mueschenborn S, Llosa N, Grout M, Pier GB. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infection and immunity. 2003 Jul;71(7):3875-84.
29.Abu-Baker NF, Masoud H. Synthesis, characterization, and immunological properties of LPS-based vaccines composed of O-polysaccharides conjugated with recombinant exoprotein a from Pseudomonas aeruginosa. Advances in Microbiology. 2016;6(04):332.
30.Najafzadeh F, Shapouri R, Rahnema M, Azar SR, Kianmehr A. Pseudomonas aeruginosa PAO-1 lipopolysaccharide-diphtheria toxoid conjugate vaccine: preparation, characterization and immunogenicity. Jundishapur Journal of Microbiology. 2015 Jun 1;8(6).
31.Najafian M. Immunological evaluation of Pseudomonas aeruginosa alginate conjugated to tetanus toxoid in mice as a vaccine candidate. M. Sc. Zanjan Branch. Islamic Azad University. Iran.[In Persian]. 2011.