Adaptive-PGRP: الگوریتم مسیریابی در شبکههای VANET بر اساس الگوریتم PGRP با ارسال تطبیقی پیام های Hello
محورهای موضوعی : پردازش چند رسانه ای، سیستمهای ارتباطی، سیستمهای هوشمندربابه غفوری وایقان 1 , رضا اکبری سفیده 2
1 - 1. استادیار، گروه کامپیوتر، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه کامپیوتر، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: VANET, مسیربابی, بسته Hello, الگوریتم PGRP,
چکیده مقاله :
مسیریابی در شبکه های بین خودرویی به دلیل سرعت خودروها و تغییرات سریع شبکه، یک مساله چالش برانگیز است. در این شبکه ها الگوریتمهای مسیریابی جغرافیایی دارای محبوبیت بیشتری بوده و توجه بیشتری را به خود جلب کرده اند. کارآیی الگوریتم های مسیریابی جغرافیایی به دو عامل استراتژی انتخاب بهترین همسایه و چگونگی مدیریت کردن تحرک گره های همسایه از طریق روال ارسال پیام های Hello بستگی دارد. انتشار پیامهای Hello، منجر به مبادله ی بسته های بسیار و افزایش سربار شبکه و حتی باعث اشباع کانال و افزایش احتمال تصادم بسته های داده می شود. در این مقاله با هدف کاهش نرخ ارسال پیامهای Hello، نرخ ارسال این پیام ها براساس عوامل سازگار با مشخصه های شبکه های بین خودرویی مانند ازدحام و طول عمر پیوند ها به صورت تطبیقی تنظیم میشود. با به کار بردن روش پیشنهادی بر روی الگوریتم PGRP(Predictive Geographic Routing Protocol)، نرخ ارسال بسته های Hello در این الگوریتم با توجه به شرایط شبکه تنظیم میشود. در نتیجه پیامهای سربار کنترلی کاهش می یابد و کیفیت خدمات در شبکه بهبود مییابد. نتایج شبیه سازی نشان می دهد که روش پیشنهادی در سناریوهای مختلف باعث بهبود عملکرد پروتکل PGRP شده و ضمن افزایش نرخ تحویل بسته، تاخیر انتها به انتها و سربار کنترلی را کاهش میدهد.
Introduction: In the vehicular ad hoc networks (VANETs), routing is a challenging issue due to the nodes mobility speed and frequent changes in the network topology. In these networks, geographic routing algorithms are more popular and have attracted more attention. The efficiency of geographic routing algorithms depends on the two factors: strategy of choosing the best neighbor and how to manage the mobility of neighbor nodes by the procedure of broadcasting Hello messages. Broadcasting Hello messages leads to the exchange of many control packets and causes the channel saturation and increases the probability of congestion and collision.
Method: In this work, with the aim of reducing the control overhead messages, the broadcast rate of Hello messages is adjusted adaptively based on the congestion and link expiration time. By applying the proposed method on the PGRP (Predictive Geographic Routing Protocol) algorithm, the broadcast rate of Hello packets is adjusted according to the network conditions. As a result, routing overhead packets are reduced and service quality in the network is improved.
Results: Two groups of experiments have been conducted. In the first group, the aim is to investigate the effect of increasing the number of vehicles. In the second group experiments, the goal is to investigate the nodes speed increasing. The simulation results show that the proposed method improves the performance of the PGRP protocol in different scenarios. It has been shown the proposed method for a different number of vehicles increases the packet delivery ratio on average by 16%; decrease end to end delay on average by 7%; decreases normalized routing overhead by 18% compared to PGRP. Also, it has been shown the proposed method for a varying speed of vehicles increases the packet delivery ratio by 18%; decreases average end to end delay by 5% and decreases the normalized routing overhead by 22% compared to PGRP.
Discussion: When the number of vehicles increases, the sources of broadcasting Hello messages increase, and the probability of collision increases. In the proposed method this situation is detected and the broadcast rate of Hello messages reduces. As the same way, when the speed of the nodes is low, the expiration time of links increases, and the proposed method reduces the broadcast of Hello messages to avoid wasting the network resources.
[1] A. Kumar Goyal, G. Agarwal, A. K. Tripathi and S. Girish, "Systematic Study of VANET Applications, Challenges, Threats, Attacks, Schemes and Issues in Research," in Green Computing in Network Security, Taylor & Francis, 2022, p. 20.
[2] K. Bayad, E. H. Bourhim, M. Rziza and M. Oumsis, "Comparative study of topology-based routing protocols in vehicular ad hoc network using IEEE802.11p," in 2016 International Conference on Electrical and Information Technologies,IEEE, 2016.
[3] J. Liu, J. Wan, Q. Wang, D. Pan, K. Zhou and Y. Qiao, "A survey on position-based routing for vehicular ad hoc networks," Telecommunication Systems, vol. 62, pp. 15-30, 2016.
[4] J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United States," Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, 2011.
[5] S. A. A. Shah, E. Ahmed, F. Xia, A. Karim, M. Shiraz and R. M. Noor, "Adaptive Beaconing Approaches for Vehicular Ad Hoc Networks: A Survey," IEEE Systems Journal, vol. 12, no. 2, pp. 1263 - 1277, 2018.
[6] R. Karimi and S. Shokrollahi, "Predictive geographic routing protocol for VANETs," Computer Networks, vol. 141, pp. 67-81, 2018.
[7] A. T. Amaya, A. A. P. Pohl, M. S. Fonseca and R. Lüders, "Traffic-Aware Beacon Interval for Position-Based Protocols in VANETs," in 2022 IEEE Latin-American Conference on Communications (LATINCOM), 2022.
[8] A. Khan, A. A. Siddiqui and F. Ullah, "VP-CAST : Velocity and Position-Based Broadcast Suppression for VANETs.," IEEE Transactions on Intelligent Transportation Systems., 2022.
[9] V. Singh, K. Sharma and H. Verma, "ABNT: Adaptive beaconing and neighbor timeout for geographical routing in UAV networks," Peer-to-Peer Netw. Appl., 2022.
[10] O. i. Alzamzam and I. Mahgoub, "Link utility aware geographic routing for urban VANETs using two-hop neighbor information," Ad Hoc Networks, vol. 106, 2020.
[11] R. K. Jaiswal, "Position-based routing protocol using Kalman filter as a Prediction module for vehicular ad hoc networks,," Computers and Electrical Engineering, vol. 83, 2020.
[12] Z. Squalli Houssaini, I. Zaimi, M. Drissi and M. Oumsis, "Trade-off between accuracy, cost, and QoS using a beacon-on-demand strategy and Kalman filtering over a VANET," Digital Communications and Networks, vol. 4, no. 1, pp. 13-26, 2018.
[13] A. Hassan, A. Abdullah and O. Kaiwartya, "Multi-metric geographic routing for vehicular ad hoc networks," pp. 2763-2779, 2018.
[14] Y. Zhang, M. Wang, J. Wang and A. Zhan, "Research on adaptive beacon message broadcasting cycle based on vehicle driving stability," Network Managment, vol. 31, no. 2, 2021.
[15] N. i. Dharani Kumar and B. Shylaja, "AMGRP: AHP-based Multimetric Geographical Routing Protocol for Urban environment of VANETs," Journal of King Saud University - Computer and Information Sciences, vol. 31, no. 1, pp. 72-81, 2019.
[16] A. Huang and M. Motani, "A geographical segment architecture for connected vehicle networks, Vehicular Communications," Vehicular Communications, vol. 19, 2019.
[17] J. Aznar-Poveda, A. García-Sánchez and E. Egea-López, "Approximate reinforcement learning to control beaconing congestion in distributed networks," Scientific Reports, vol. 142, 2022.
[18] M. Naderi, F. i. Zargar and M. Ghanbari, "Adaptive Beacon Broadcast in Opportunistic Routing for VANETs," Ad Hoc Networks, vol. 86, pp. 119-130, 2019.
[19] A. Boukerche, C. Rezende and R. W. Pazz, "Improving Neighbor Localization in Vehicular Ad Hoc Networks to Avoid Overhead from Periodic Messages," in GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, 2009.
[20] Q. Zhang, H. Zhang, X. Du, Z. Zhou, S. Su and R. Jin, "Contention-based adaptive position update for intermittently connected VANETs," in 2014 IEEE Global Communications Conference, 2014.
[21] S. Sharma and M. Panjeta, "Optimization transmit rate-based decentralized congestion control scheme in vehicular ad hoc networks," in AIP Conf. Proc, 2022.
[22] M. Elappila, S. Chinara and D. R. Parhi, "Survivable Path Routing in WSN for IoT applications," Pervasive and Mobile Computing, 2018.
[23] W. Su, S.-J. Lee and M. Gerla, "Mobility Prediction and Routing in Ad Hoc Wireless Networks," International Journal of Network Management, vol. 11, no. 1, pp. 3-30, 2001.
[24] S.-S. Wang and Y.-S. Lin, "PassCAR: A passive clustering aided routing protocol for vehicular ad hoc networks," Computer Communications, vol. 36, no. 2, pp. 170-180, 2013.
[25] T. l. Issariyaku and E. Hossain, Introduction to Network Simulator NS2, Springer, 2009.
[26] M. Fiore, J. Harri, F. Filali and C. Bonnet, "Vehicular mobility simulation for VANETs," in Annual Symposium on Simulation, 2007.
[27] D. Krajzewicz, G. Hertkorn, C. Feld and P. Wagner, "SUMO (Simulation of Urban MObility); An open-source traffic simulation," in 4th Middle East Symposium on Simulation and Modelling, 2002.