شناسایی و تحلیل عوامل کلیدی مؤثر در تغییر کاربری جنگل منطقه جنگلی فندقلو با استفاده از رویکرد آیندهپژوهی( تحلیل ساختاری متقاطع و پویش محیطی)
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداری
خلیل ولیزاده کامران
1
,
مریم صادقی
2
,
سید اسداله حجازی
3
1 - عضو هیات علمی دانشگاه تبریز
2 - کارشناسی ارشد سنجش از دو ر و gis دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز.تبریز
3 - گروه ژئومورفولوژی دانشگاه تبریز
کلید واژه: آیندهپژوهی, نرمافزار میکمک, تغییرات کاربری جنگل, تحلیل ساختاری, فندقلو,
چکیده مقاله :
بهمنظور مدیریت بهتر اکوسیستمهای طبیعی، انسانساخت، برنامهریزی بلندمدت میتواند به برنامهریزان محیطزیست و مدیران منابع طبیعی برای تصمیم آگاهانهتر کمک کند. هدف از این پژوهش، شناسایی عوامل کلیدی مؤثر تغییرات کاربری اراضی منطقه جنگلی فندقلو با رویکرد آیندهپژوهی میباشد در ابتدای پژوهش 19 عامل مؤثر در تغییرات کاربری جنگل در ابعاد مختلف اقتصادی، اجتماعی کالبدی، طبیعی و سیاسی توسط خبرگان تأیید گردید و در دور بعدی پرسشنامهای به ابعاد 19*19 طراحی و در اختیار خبرگان گذاشته شد که برای وزن دهی از اعداد 3 تا 0 که سه تأثیرگذاری بالا و صفر بدون تأثیر و وزن دهی گردید. تأثیرگذاری و تأثیرپذیری متغیرها بهصورت مستقیم و غیرمستقیم در نرمافزار میکمک (MICMAC) مورد تجزیه تحلیل قرار گرفت. درنهایت هشت عامل مؤثر در تغییر کاربری جنگل منطقه فندقلو تعیین شد. از بین عوامل کلیدی عامل توریست، کاربری اراضی، فاصله از روستا و جمعیت، قطع و برداشت، پوشش گیاهی، انگیزه تغییر از کشاورزی به مسکونی و ارتفاع مهمترین عوامل کلیدی در آینده سیستم منطقه میباشند.
In order to better manage natural ecosystems, man-made, long-term planning can help environmental planners and natural resource managers make more informed decisions. The purpose of this study is to identify the key factors affecting land use change in Fandolo forest area with a future research approach. At the beginning of the study, 19 factors affecting forest use changes in various economic, social, physical, natural and political dimensions were approved by experts. Dimensions 19 * 19 were designed and provided to experts for weighting from numbers 3 to 0, which were three high and zero effects without impact and weighting.The effect of variables was directly and indirectly analyzed in MICMAC software. Finally, eight effective factors in changing the forest use of Fandolo region were identified. Among the key factors of tourist factor, land use, distance from village and population, logging, vegetation, motivation to change from agricultural to residential and height are the most important key factors in the future of the regional system.
1. Bell W. 2003. Foundations of Futures Studies: History, Purposes, and Knowledge. Transaction Publishers.
2. Banzhaf, H.S., Lavery, N. (2010). Can the Land Tax Help Curb Urban Sprawl? Evidence from Growth Patterns in Pennsylvania, Journal of Urban Economics, Vol 67, pp 169-179.
3. Bonyad Tose Farda. 2005. Technology foresight methods, Tehran. Bonyad Tose Publishers. [In Persian].
4. Caldas M M, Simmons C, Walker R, Perz S, Aldrich S, Pereira R, Leite F, Arima E. 2010. Settlement Formation and Land Cover and Land Use Change: A Case Study in the Brazilian Amazon. Journal of www.SID.irArchive of SID American Latin Geography, 9(1).
5. Dong C, Schoups G, van de Giesen N. 2013. Scenario development for water resource planning and management: a review. Technological forecasting and Social change, 80(4), 749-761.
6. Fahey L, Randall RM. 1998. Learning from the Future: Competitive Foresight Scenarios. Wiley Publications: New York, 13.
7. Jafari F, Moazzeni M, Badali A. 2020. Futures Study of Urban Land Use Change in Tabriz Metropolis. Periodical Scientific Research Planning Spactial (Geographic). Vol. 10, No. 2, Ser (37).
8. Gordon T. 1994. Trend Impact Analysis. Futures Research Methodology.
9. Godet M. 2006. Effective strategic management the prospective approach. Technology Analysis & Strategic Management,vol,1,No,1.
10. Godet A J, Meunier MF, Roubelat. F. 2003. Structural analysis with the میک مک method & actors’ strategy with MACTOR method. Futures Research Methodology, No. 2.
11. Krawczyk E. 2006. Futures thinking in city planning processes: the case of Dublin, PhD. Dublin Institute of Technology School of Environmental Planning and Management Faculty of Built Environment.
12. Kameoka A, Yokoo Y, Kuwahara T. 2004. A challenge of integrating technology
foresight and assessment in industrial strategy development and policymaking. Technological
Forecasting and Social Change, 71(6), 579-598.
13. Li Sh. 2011. Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Computers & Geosciences, 37: 111–121.
14. Naimi K, Pourmohammadi M. 2016. Identifying the key factors affecting the future status of low-income urban settlements in Sanandaj with emphasis on the application of futures studies. Quarterly Journal of Urban Studies, No. (In Persian).
15. Ndubisi F.1997. Landscape Ecological Planning. In: Thompson, G.F., Steiner, F.R. (Eds.). Ecological Design and Planning, Wiley, New York.
16. Nazemi A, Radiri R. 2016. Futurism from Concept to Implementation, Ministry of Industries and Mines, New Industries Center, Tehran [In Persian].
17. Mertnes B, & Lambin EF. 2000. Land-Cover Change Trajectoriesim Southern Cameroon, Annals of the Association of American Geographers, 90 (3)
18. Mishra V, Kumar Rai P, Mohan M. 2014. Prediction of Land use changes based on change modelerer (LCM) using Remote sensing: a case study of muzaffarpur (BIHAR),India. Original scientific paper. J. Geogr. Inst. Cvijic, 64(1), 111-127.
19. Martin B R. 1995. Foresight in science and technology. Technology Analysis and Strategic Management, 7(2), 139-168.
20. Rostami Kia Y, Little Tabari M, Ahmadzadeh A, Rahmani A. 2017. The effect of growth-promoting bacteria on vegetative traits and nutrients of hazelnut seedlings in Ardabil hazelnut nursery. Iranian Journal of Forest and Poplar Research, 25 (1), 116-126.
21. Taghilou A. 2018. Land use Changes Scenarios for Rural Areas (Case study: Bash Qaleh Dehestan –Urmia County). Journal of Research and Rural Planning, Volume 7, No. 3, Autumn 2018, Serial No.23 eISSN: 2383-2495 ISSN: 2322-2514 http://jrrp.um.ac.ir.
22. Torahi A, Chand rai S. 2011. Land Cover Classification and Forest ChangeAnalysis. Using Satellite Imagery-A Case Study in Dehdez Area of Zagros Mountain inIran, Journal of Geographic Information System, 3, pp. 1-11.
23. Teymouri R. 2016. Modeling the ecological structure of urban green space development with a futuristic approach Case study: Tabriz metropolis, School of Geography and Planning. University oF Tabriz. [In Persian].
24. Valizadeh Kamran Kh, Sadegih M, Hejazi SA. 2021. Modeling SA.2021. Land Changes forest Using by LCM in Fandoqhlo Forest Area (Ardabil). Journal of Civil and Environmental Engineering Volume,Issue 1. (In Persian).
25. Volkery A, Riberio H. 2009. Scenario planning in public policy:Understanding use, impacts and the role of institutional context factors. Tecnological Forecasting & social change, 76,1198-1207.
26. Paegelowa M,Camacho Olmedob M T, Masc J F, Houetd T Pontius Jr R G. 2013. Land change modelling: moving beyond projections. International Journal of Geographical Information Science, Vol. 27, No. 9, 1691–1695.
27. Rabbani T.2012. Structural analysis method is a tool for recognizing and analyzing variables affecting the future Urban issues,Proceedings of the First Futurology Conference. [In Persian].
28. Weber M. 2012. FLAs and new patterns of governance of research and innovation. In S. Giessecke, A., van der Gießen, & S. Elkins (Eds.). The role of forward-looking activities for the governance of Grand Challenges. Insights from the European Foresight Platform, (pp. 4-11). Retrieved from:https:// ec.europa.eu/ jrc/ en/scientific-tool/ european-foresight-platform.