شناسایی و ردیابی گردوغبار و تعیین منشأ آن با استفاده از شاخص عمق نوری حاصل از دادههای سنجنده MODIS در استان قم
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداریحسین توکلی نکو 1 , عباس پورمیدانی 2 , سید مهدی ادنانی 3
1 - استادیار، بخش تحقیقات جنگلها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قم، سازمان تحقیقات، آموزش و ترویج کشاورزی،
2 - استادیار، بخش تحقیقات جنگلها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قم، سازمان تحقیقات، آموزش و ترویج کشاورزی،
3 - استادیار، بخش تحقیقات جنگلها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قم، سازمان تحقیقات، آموزش و ترویج کشاورزی،
کلید واژه: سنجش از دور, گردوغبار, عمق نوری, قم,
چکیده مقاله :
گردوغبار یکی از پدیدههای مناطق خشک و نیمهخشک است که مخاطرات زیستمحیطی زیادی بههمراه دارد. این تحقیق با هدف شناسایی کانونهای گردوغبار و ردیابی آنها با استفاده از دادههای مبتنی بر سنجش از دور و سیستم اطلاعات جغرافیایی، پهنهبندی شدت و طبقهبندی کانونها و اولویتبندی مناطق از نظر میزان گردوغبار و تهیه نقشه پهنهبندی رخداد پدیده گردوغبار در استان قم اجرا شد. دادههای هواشناسی برای سالهای (2015- 2018) از ایستگاههای هواشناسی استان قم تهیه گردید و برای بارزسازی پدیده گردوغبار از تصاویر سنجنده مودیس (MODIS) استفاده شد. رخدادهای گردوغبار با دید 1000 متر و کمتر در بخش مرکزی استان قم در سالهای مختلف (2015- 2018) روند متفاوتی داشت و بیشتر از 177 رخداد گردوغبار در این بازه زمانی صورت گرفت. به-طورکلی بیشینه پدیده گردوغبار در فصلهای سرد و کمینه این پدیده در فصل بهار و تابستان بود. بررسی روند تغییرات عمق نوری (AOD) نشان داد که بیشترین مقدار میانگین عمق نوری در سالها و ماههای مختلف متفاوت بود. بیشترین مقدار تداوم عمق نوری زیاد در سال 2015 بود که از آوریل تا ژوئن ادامه داشت. همچنین تغییرات دما و بارندگی نشان داد که در منطقه مورد مطالعه روند کلی دما و بارندگی افزایشی بوده است. با توجه به روند افزایشی بیابانزایی و ویژگیهای اقلیمی از قبیل افزایش دما و کاهش بارندگی و بهتبع آن وقوع خشکسالی و بهرهبرداریهای نادرست و نامناسب از اراضی، باعث افزایش کانونهای برداشت گردوغبار همراه با فراوانی وقوع و مقدار آن شده است و آن را به یک چالش زیستمحیطی کنترلناپذیر تبدیل کرده است.
Dust is one of the phenomena in arid and semi-arid areas that pose a lot of environmental hazards. This study was conducted with the aim of identifying dust and tracking them, using data based on remote sensing and GIS, zoning intensity and classification of centers and prioritizing areas in terms of dust and preparing a zoning map of dust phenomenon in Qom province. Meteorological data for the years (2015-2018) were prepared from meteorological stations in Qom and MODIS sensor images were used to highlight the dust phenomenon. Dust events with a visibility of 1000 meters and less in Qom province in different years (2018-2015) had a different trend and more than 177 dust events occurred in this period. In general, the maximum dust phenomenon was in the cold seasons and the minimum was in the spring and summer seasons. Examination of the trend of changes in AOD showed that the maximum value of light depth varied in different years and months. The maximum amount of high light depth continuity was in 2015, which lasted from April to June. Also, changes in temperature and rainfall showed that the general trend of temperature and rainfall was increasing in the study area. Due to the increasing trend of desertification and climatic characteristics such as increasing temperature and decreasing rainfall and consequently the occurrence of drought and improper land use, has increased the centers of dust harvest with the frequency of occurrence and its amount and turned it Has become an uncontrollable environmental challenge.
1. Al-Bakri, J.T., Brown, L., Gedalof, Z.E., Berg, A., Nickling, W., Khresat, S., Saoub, H. 2016. Modelling desertification risk in the North-west of Jordan using geospatial and remote sensing techniques. Geomatics Natural Hazards and Risk, 7(2): 531-549. https://doi.org/10.1080/19475705.2014.945102.
2. Bayat, R., Jafari, S., Ghermezcheshmeh, B., Charkhabi, A.H. 2016. Studying the effect of dust on vegetation changes (Case study: Shadegan wetland, Khuzestan). RS & GIS for Natural Resources, 7(2): 17-32. (In Persian).
3. Boroghani, M., Pourhashemi, S., Zangane Asadi, M., Moradi, H. 2017. Dust source identification in the Middle East by using remote sensing. Journal of Natural Environmental Hazards, 6(11(: 33-57. (In Persian).
4. Ciren, P., Kondragunta, S. 2014. Dust aerosol index (DAI) algorithm for MODIS. Journal of Geophysical Research: Atmospheres, 119 (8): 4770-4792. doi: https://doi.org/10.1002/2013JD020855
5. Daniali, M., Mohamadnezhad, B., Karimi, N. 2018. Spatial analysis of dust in Khuzestan province using satellite imagery. RS & GIS for Natural Resources, 9(1): 58-73. (In Persian).
6. Dolatkordestani, M., Nosrati, K., Maddah, M., Tiefenbacher, J.P. 2022. Identification of dust sources in a dust hotspot area in Iran using multispectral Sentinel 2 data and deep learning artificial intelligence machine. Geocarto International, 37: 1-14. dOI: https://doi.org/10.1080/10106049.2022.2043452
7. Ehsani, A.H., Bigdeli, M. 2020. The PM2.5 estimations over Tehran using remotely sensed aerosol optical depths data. Journal of Climate Research, 43: 99-108. (In Persian).
8. Eskandari Damaneh, H., Eskandari Damaneh, H., Sayadi, Z., Khoorani, A. 2021. Evaluation of spatiotemporal changes and correclations of aerosol optical depth, NDVI and climatic data over Iran. Iranian journal of Range and Desert Research, 28(4): 725-735. (In Persian).
9. Ghouchizadeh, A., Moeinaddini, M., Shahbazi, R., Ahmadi, N., Navour Naviri, M. 2018. Study of the importance of Quaternary dust sources emission on Qom air quality. Quaternary Journal of Iran, 4(3): 341-360. (In Persian).
10. Ginoux, P., Prospero, J.M., Gill, T. E., Hsu, N.C., Zhao, M. 2012. Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3(: 1-36. doi: https://doi.org/10.1029/2012RG000388.
11. Gupta P., Sundar Christopher A. 2008. An evaluation of Terra-MODIS sampling for monthly and annual particulate matter air quality assessment over the South-eastern United States. Atmospheric Environment, 4: 6465-6471. doi: https://doi.org/10.1016/j.atmosenv.2008.04.044.
12. Jebali, A., Zare, M., Ekhtesasi, M.R., Jafari, R. 2021. A new threshold free dust storm detection index based on MODIS reflectance and thermal bands. GIScience & Remote Sensing, 58(8): 1369-1394. doi: https://doi.org/10.1080/15481603.2021.1988428
13. Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., Li, B. 2014. Land covers classification using Landsat 8 operational land imager data in Beijing, China. Geocarto International, 29(8): 941-958. doi: https://doi.org/10.1080/10106049.2014.894586.
14. Khoshsima, M., Bidokhti, A., Ahmadi-Givi, F. 2013. Evaluation of aerosol optical depth using visibility and remote sensing data in urban and semi urban areas in Iran. The Journal of the Earth and Space Physics, 39(1): 163-174. (In Persian).
15. Khosroshahi, M., Mahmoudi, F., Kashki, M.T. 2011. Determination of Desert Areas in Iran on the Bases of Geological Effected Factors. Geosciences, 80(3): 15-22. (In Persian).
16. Lee, YC, Xun, Y., Mark, W. 2010. Transport of dusts from East Asian and non-East Asian sources to Hong Kong during dust storm related events 1996–2007. Atmospheric Environment, 44(30): 3728-3738. doi: https://doi.org/10.1016/j.atmosenv.2010.03.034.
17. Lyu, Y., Qu, Z., Liu, L., Guo, L., Yang, Y., Hu, X., Liu, Q. 2017. Characterization of dustfall in rural and urban sites during three dust storms in northern China, Aeolian Research, 28: 29-37. doi: https://doi.org/10.1016/j.aeolia.2017.06.004.
18. Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M.A.J., Flanner, M.G., Hoffman, F.M., Lawrence, D.M., Lindsay, K., Mayewski, P.A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P.E., Zender, C.S. 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry Physics, 10(22): 10875-10893. doi: https://doi.org/10.5194/acp-10-10875-2010.
19. Mehrvarz Moghanlo, K., Feiznia, S., Ghayomian, J., Ahmadi, H. 2019. Investigation of Quaternary deposits suitable for floodwater spreading using remote sensing techniques and GIS (Case study: Tassuj plain). Iranian journal of Range and Desert Research, 12(4): 438-467. (In Persian).
20. Mirakbari M, Ebrahimi Khusfi Z. 2020. Investigation of spatial and temporal changes in atmospheric aerosol using aerosol optical depth in Southeastern Iran. RS & GIS for Natural Resources, 11(3): 87-105. (In Persian).
21. Naserzadeh, M.H., Fatahi, H. 2016. The recognition of synoptic and local scale factors influencing the occurrence of the dust phenomenon in Ilam. The Regional Planning Journal 9(21): 57-74. (In Persian).
22. Omidvar, K., Dehghan, M., Khosravi, Y. 2022. Assessment of relationship between aerosol optical depth (AOD) index, wind speed, and visibility in dust storms using genetic algorithm in central Iran (case study: Yazd Province). Air Qual Atmos Health, 112: 1-10. doi: https://doi.org/10.1007/s11869-022-01214-y.
23. Oommen, T., Misra, D., Twarakavi, N.K.C., Prakash, A., Sahoo, B., Bandopadhyay, S. 2008. An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40: 409–424. doi: https://doi.org/10.1007/s11004-008-9156-6.
24. Papi, R., Kakroodi, A.A., Soleimani, M., Karimi, L., Amin, F., Alavipanah, S.K. 2022. Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran. Ecological informatics, 70: 1-15. doi: https://doi.org/10.1016/j.ecoinf.2022.101724.
25. Prasad, A.K., Singh, R.P. Singh, A. 2004. Variability of aerosol optical depth over Indian subcontinent using MODIS data. Journal of the Indian Society of Remote Sensing, 32(4): 313-316. doi: https://doi.org/10.1007/BF03030855.
26. Rajaee T, Rohani N, Jabbari E, Mojaradi B. 2020. Tracing and assessment of simultaneous dust storms in the cities of Ahvaz and Kermanshah in western Iran based on the new approach. Arabian Journal of Geosciences, 13(12):1-20. doi:https://doi.org/10.1007/s12517-020-05443-2
27. Raufi Fard, K. 2016. Analysis of dust phenomenon in Qom province. In: Proceeding of First International Conference on Dust. Ahvaz, Iran. pp. 660-665. (In Persian).
28. Rezaei, M., Farajzadeh, M., Mielonen, T., Ghavidel, Y. 2019. Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmospheric Pollution Research, 10(2): 508-5019. doi: https://doi.org/10.1016/j.apr.2018.10.002.
29. Shao, Y, Dong, C.H. 2006. A review on East Asian dust storm climate, modelling and monitoring. Global and Planetary Change, 52(1): 1-22. doi: https://doi.org/10.1016/j.gloplacha.2006.02.011.
30. Wang, Y., Wang, R., Ming, J., Liu, G., Chen, T., Liu, X., Cheng, G. 2016. Effects of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin, China. Atmospheric Environment, 127: 205-212. doi: https://doi.org/10.1016/j.atmosenv.2015.12.041.