ارزیابی مدل های رقومی ارتفاع جهت تهیه نقشه پتانسیل فرسایش خندقی با استفاده از مدل مکسنت و سامانه اطلاعات جغرافیایی (مطالعه موردی: حوزه آبخیز سمیرم، جنوب استان اصفهان)
محورهای موضوعی : برنامه های کاربردی در خطر بلایای طبیعی
1 - استادیار گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی، دانشگاه اصفهان، اصفهان، ایران
کلید واژه: مدل مکسنت, سیستم اطلاعات جغرافیایی, فرسایش خندقی, مدل رقومی ارتفاع,
چکیده مقاله :
پیشینه و هدف فرسایش خندقی به عنوان یک نوع فرسایش آبی در اقلیمهای متفاوتی از مناطق خشک تا مرطوب گسترشیافته است. این نوع از هدر رفت خاک با تجمع روانابها، موجب جابجای و تخریب افقهای سطحی خاک میگردد. در مناطق وسیعی از ایران در شمال، مرکزی و جنوب با این نوع هدر رفت خاک مواجه میباشند. درواقع فرسایش خندقی به دلایل توپوگرافی متنوع، فرسایشپذیری خاک، عدم مدیریت صحیح خاک و کاربری نامناسب اراضی در بسیاری از این مناطق رخ میدهد. بنابراین برای حفاظت خاک در این مناطق لازم هست که نقشه حساسیت به فرسایش خندقی در دسترس مدیران و برنامه ریزان قرار داشته باشد. پارامترهای زیادی در ایجاد فرسایش خندقی تأثیر دارند ازجمله خاک، زمینشناسی منطقه، تکتونیک، هیدرولوژی، کاربری اراضی، پوشش گیاهی و توپوگرافی، که در مطالعات مختلف در سراسر جهان به آن اشارهشده است. معیار توپوگرافی منطقه از پارامترهای مهم در ایجاد فرسایش آبی ازجمله فرسایش آبکندی محسوب میگردد، که در هر منطقه با توجه به ویژگیهای فیزیکی منطقه منحصربهفرد عمل می کند. این پارامتر همچنین در واقع به صورت غیرمستقیم بر دیگر شاخص ها و یا معیارها تأثیرگذار است (مانند تأثیر آن بر پوشش گیاهی، اقلیم یا خاک منطقه). اگرچه تحقیقات زیادی در زمینه فرسایش خندقی صورت گرفته است، ولی مطالعات کمی در زمینه کاربرد مدلهای آماری تصادفی انجامگرفته است. این مطالعه اولین تحقیق در زمینه کاربرد مدل آماری حداکثر آنتروپی مکسنت در مناطق مرکزی ایران با تأکید بر اهمیت شاخصهای توپوگرافی مستخرج از مدلهای رقومی رایگان است. و بهعنوان یک روش جدید جهت تهیه نقشه حساسیت فرسایش خندقی در حوزه آبخیز سمیرم در جنوب استان اصفهان است. این حوزه آبخیز توسط تحت تأثیر فرسایشهای شدید آبی از جمله خندقی، شیاری و لغزشی است. همچنین این مطالعه ارزیابی نتایج در مدل رقومی ارتفاعی SRTM و ASTER با قدرت تفکیک 30 متر در تهیه نقشه خطر فرسایش خندق است که دادههای فوق از سایت زمینشناسی امریکا (USGS) تهیه گردید. تأکید اصلی در این تحقیق بر روی شاخصهای توپوگرافی بود زیرا که این شاخصها به صورت مستقیم و غیرمستقیم بر روی ویژگیها خاک، پوشش گیاهی و اقلیم نیز تأثیرگذار میباشند.مواد و روش ها در این تحقیق برای پیش بینی مناطق حساس که در نتیجه فرسایش خندقی می باشند شامل مراحل ذیل است. در مرحله اول، با استفاده از تصاویر گوگل ارث و عکسهای هوایی و همچنین عملیات میدانی اقدام به دیجتایز کردن تعدادی از مناطق فرسایش خندقی بهصورت پلی گون انجام گردید که در ادامه کار تبدیل به نقاط گردیدند. در مرحله دوم اقدام به تهیه مهمترین شاخصهای توپوگرافی مؤثر بهعنوان لایههای محیطی مؤثر بر رخداد فرسایش خندقی گردید. شاخصهای توپوگرافی شامل شاخص رطوبت توپوگرافی، شاخص انحنا، شاخص انحنا پروفایل، شاخص شیب، شاخص جهت، شاخص قدرت فرسایندگی جریان، شاخص طول جریان، شاخص حوزه یا تمرکز جریان، شاخص همگرایی، شاخص ارتفاع و شاخص LS. این شاخصها از دو مدل رقومی ارتفاعی ASTER و SRTM با دقت 30 متر در محیط نرمافزار ساگا جی ای اس (SAGAGIS) تهیه گردید که در نهایت تبدیل به فرمت ASCII جهت اجرای مدل گردید. قبل از استخراج این شاخصهای توپوگرافی، پیش پردازهای لازم شامل فیلترگذاری و حذف خطاهای هیدرولوژیک و در محیط نرمافزار ArcGIS و ساگا و با استفاده از الگوریتم داربکس و پلانچون اقدام گردید. مدل مکسنت مدل حداکثر آنتروپی یک روش کلی برای پیش بینی یا استنباط از اطلاعات ناکامل است. این مدل برنامههای کاربردی در مناطق مختلف مانند نجوم، بازسازی تصویر، فیزیک آماری و پردازش سیگنال را مورد بررسی قرار میدهد. ایده مدل مکسنت تخمین احتمال رخداد هدف مورد مطالعه است. در واقع این مدل تنها نیاز به دادههای رخداد فرسایش خندقی نیاز دارد (دادههای موجود) از دیگر مزایای این مدل موارد زیر را شامل میشود؛ تنها به اطلاعات مربوط به وجود فرسایش، همراه با اطلاعات زیست محیطی برای کل منطقه مورد مطالعه نیاز دارد. این مدل میتواند از هر دو نوع دادههای پیوسته و یا گسسته جهت متغیرهای مستقل در مدل بکار برده شود.نتایج و بحث با به کار بردن مدل مکسنت در حوزه سمیرم، 70 درصد نقاط خندقی به عنوان نقاط تعلیمی به مدل و 30 درصد آن به عنوان نقاط آزمایشی جهت تعیین صحت ارزیابی نقشه نهایی تعیین گردید. اعتبار مدل مورد استفاده در این تحقیق با استفاده از سطح زیر نمودار راک یا سطح زیر منحنی AUC مورد ارزیابی قرار گرفت. نمودارهای راک به صورت اتوماتیک با اجرای این مدل برای دو نوع داده تعلیمی و آزمایشی تهیه میگردد. میزان AUC جهت پهنهبندی فرسایش خندقی برای دادههای تعلیمی نقشههای رقومی ارتفاع ASTER و SRTM به ترتیب 0.64 و 0.72 و برای نمونههای آزمایشی 0.68 و 0.73 است. این نتایج بیانگر آن است که مدل ارتفاعی SRTM دارای دقت بالاتری نسبت به ASTER است، و نقشه پتانسیل فرسایش خندقی با اجرا کردن شاخصهای مستخرج از مدل ارتفاعی SRTM آورده شده است به نظر میرسد یکی از دلایل پایین بودن دقت مدل ASTER به دلیل تأثیر پوشش گیاهی باشد گه باعث ایجاد خطاهای تراس مانند شده است درحالیکه در نقشه رقومی ارتفاعی SRTM به دلیل ماهیت راداری امواج این خطا کاهشیافته و نقشه دقیقتری از این مدل، تهیهشده است. نتایج این پژوهش نشان داد که شاخصهای قدرت فرسایندگی جریان آب با 40.30 درصد، ارتفاع با 22.7 درصد و شاخص همگرایی با 18 درصد دارای بیشترین تأثیر بر میزان فرسایش خندقی منطقه مطالعاتی میباشند. در این مطالعه نقشه پهنهبندی پتانسیل فرسایش خندقی در حوزه آبخیز سمیرم نشان میدهد، که مناطق با پتانسیل بالای فرسایشی بیشتر در نواحی جنوبی و جنوب غربی حوزه مورد مطالعه است.نتیجه گیری این مطالعه با استفاده از مدل مکسنت به منظور تهیه نقشه حساسیت به فرسایش خندق در حوزه آبریز سمیرم در جنوب استان اصفهان و با استفاده از شاخصهای توپوگرافی مؤثر و با استفاده از مدل حداکثر آنتروپی جهت شناسایی مناطق حساس فرسایش خندقی و همچنین شاخصهای تأثیرگذار اقدام گردید. از نتایج این مطالعه میتوان برای برنامهریزی کاربری اراضی و مدیریت مناطق دارای فرسایش خندق در جهت توسعه پایدار استفاده کرد. اگرچه نتایج این تحقیق نقش بارز شاخصهای توپوگرافی را در تهیه نقشه پتانسیل خندقی نشان داده ولی جهت افرایش دقت نتایج مدلسازی میتوان با توجه به قابلیت اطلاعات در دسترس در منطقه مورد از دیگر معیارهای تأثیرگذار در فرسایش خندقی از قبیل کاربری اراضی، پوشش گیاهی و خاک و غیره برای پهنهبندی مناطق به حساسیت فرسایش خندقی استفاده نمود.
Background and ObjectiveGully erosion is a type of water erosion that occurs in many climate areas, from arid to humid areas. This type of soil loss causes the displacement and destruction of soil surface horizons by the accumulation of runoff. In many parts of Iran, in the north, south and central faced with this type of soil loss. In fact, gully erosion occurs in this area due to the complex topography, erodible soils, mismanagement of soil and land use/land cover. Therefore, in order to protect the soil in these areas, it is necessary that a susceptible map should be available to the managers and policymakers. Many parameters affect the occurrence of gullu erosion, including soil, geology, tectonics, hydrology, land use, vegetation and topography, that have been mentioned in various studies around the world. The topographic indices are the most important parameters in the event of gully erosion, which operates differently in each region according to the physical characteristics of the areas. This parameter also indirectly affects the other indicators or criteria (for example, its impact on the vegetation, climate and soil of the area). Even there are many researches on the gully erosion, but there are only a few studies on the modelling with applying the stochastic approaches. This study is the first attempt to the modelling of gully erosion in the central of Iran with applying the maximum Entropy model and topographic indices that have been applied with using the free of charge of digital elevation model. This study uses a new approach to preparing the susceptibility map of gully erosion in the Semirom catchment in the South of Isfahan province. This area is affected by different types of water erosion, same as; gully, rill and landslide. Also, the purpose of this research is to compare the accuracy of two digital elevation model, ASTER and SRTM with 30 m resolution, (DEM) from USGS website, for the modelling of gully erosion in the study area. The emphasis of this research was on the topography indices because it has most important on the event of gully erosion. Materials and MethodsIn this research for the prediction of the susceptible areas in the result of the main type of gully erosion, the following steps have been applied; In the first step the locations of some sampled gullies, have been digitized randomly with using the Google Earth (GE) images, aerial photos and fieldwork in polygon shapes for each gully. Subsequently, we converted the polygons and into equally spaced points. In the second step, we determine the most important criteria as the environment layers for the modeling. These topography indices including, wetness Index (TWI), curvature, profile curvature, slope, aspect, catchment area, flow length, elevation, slope, LS factor, Stream Power Index (SPI). The topographic indices have been extracted in SAGA GIS from the SRTM DEM with 30m spatial resolution and were then converted to the ASCII format to run in the model. Before applying the indices, the DEM was preprocessed with low pass filtering to extract artefacts and errors, like local noise and with using ArcGIS. Subsequently, the DEM was hydrologically corrected eliminating sinks using the algorithm proposed by Planchon & Darboux. The Maximum Entropy Model is a general-purpose method for making predictions or inferences from incomplete information. MEM explores applications in diverse areas such as astronomy, portfolio optimization, image reconstruction, statistical physics and signal processing. The idea of Maxent is to estimate a target probability. In fact, this model needs only the gullies feature (present data). The advantages of this model include the following; It requires only presence data together with environmental information for the whole study area. It can utilize both continuous and categorical data and can incorporate interactions between different variables. Results and Discussion With applying the Maxent model in the Semirom catchment, it was trained using 70% of the mapped points of gully features as the target or dependent variable and 30% of the mapped gully as testing samples. The raster type of environmental layers (topographic indices) as the independent variable. The validity of the model used in this study was assessed using the level below ROC or Area Under Curve (AUC). The ROC curve was automatically generated by running this model for both training and testing data. The AUC for training data for SRTM and ASTER is 0.64 and 0.72 respectively and also for testing is 0.68 and 0.72 respectively. These results indicate that the SRTM elevation model has higher accuracy than the ASTER DEM. One of the reasons for the low accuracy of the ASTER DEM can be due to the impact of vegetation, which has caused terrace-like errors, while in the SRTM DEM, due to the radar nature of the waves, this error is reduced and a more accurate map of this the model has been prepared. Our results show that SPI index with 40.3% contribution, elevation with 22.7% and convergence with 18% are the most important factors for the zoning of the susceptible areas. Regarding the predicted map of the potential of gully erosion, the area in the central and south of the study area are in the high probability. Conclusion This study applied the Maxent model to map the susceptibility of gully erosion in the Semirom catchment in the Isfahan Province, using various topographic effective factors and the Maxent model. Stochastic approaches like statistical mechanics provide a powerful tool to study the relations between locations of gully erosion features and corresponding environmental characteristics. The result of this study can be used for land-use planning and management of the areas with gully erosion for sustainable development in the prone areas. Although the results of this study show the prominent role of the topographic indicators for the prediction of the potential gully map, to increase the accuracy of the modeling results, in the furture researches the other criteria such as land use, vegetation and used soil, etc according to the availability of information to can be applied.
Anderson RP, Elith J, H. Graham C, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129-151. doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.
Angileri SE, Conoscenti C, Hochschild V, Märker M, Rotigliano E, Agnesi V. 2016. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262: 61-76. doi:https://doi.org/10.1016/j.geomorph.2016.03.018.
Arabameri A, Cerda A, Tiefenbacher JP. 2019. Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water, 11(6): 1129. doi:https://doi.org/10.3390/w11061129.
Buitrago JY, Martínez LJ. 2016. Digital elevation models (DEM) used to assess soil erosion risks: a case study in Boyaca, Colombia. Agronomía Colombiana, 34(2): 239-249. doi:https://doi.org/10.15446/agron.colomb.v34n2.56145.
Burrough PA, McDonnell R, McDonnell RA, Lloyd CD. 2015. Principles of geographical information systems. Oxford university press, 330 p.
Conoscenti C, Agnesi V, Cama M, Caraballo‐Arias NA, Rotigliano E. 2018. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land degradation & development, 29(3): 724-736. doi:https://doi.org/10.1002/ldr.2772.
Entezari M, Maleki A, Moradi K, Olfati S. 2015. The study of Gully Erosion in Dyereh Catchment Using the Method of Weightal Modulation and Stream Power Index. Geographical Researches, 30(3): 297-312. (In Persian)
Ghorbani N, Zeinivand H, Haghizadeh A, Tahmasebi N. 2018. Performance evaluation of Dempster-Shafer model for erosion potential mapping in Kakareza watershed, Lorestan province. Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS Techniques in Natural Resource Science), 9(3): 100-114. (In Persian)
Kedari Tushar B, Balasubramani K, Gomathi M. 2017. Comparative Analysis of CARTOSAT, ASTER and SRTM Digital Elevation Models of Different Terrains for Extraction of Watershed Parameters. The Konkan Geographer, 17: 143-152.
Kheir RB, Wilson J, Deng Y. 2007. Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(12): 1770-1782. doi:https://doi.org/10.1002/esp.1501.
Köthe R, Lehmeier F. 1993. SAGA - Ein Programmsystem zur Automatischen Relief-Analyse. Zeitschrift für Angewandte Geographie, 4/1993: 11-21.
Le Houérou HN. 1996. Climate change, drought and desertification. Journal of Arid Environments, 34(2): 133-185. doi:https://doi.org/10.1006/jare.1996.0099.
Maerker M, Quénéhervé G, Bachofer F, Mori S. 2015. A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania. Natural Hazards, 79(1): 235-253. doi:https://doi.org/10.1007/s11069-015-1855-y.
Martı́nez-Casasnovas JA. 2003. A spatial information technology approach for the mapping and quantification of gully erosion. CATENA, 50(2): 293-308. doi:https://doi.org/10.1016/S0341-8162(02)00134-0.
Masoudi M, Zakerinejad R. 2011. A new model for assessment of erosion using desertification model of IMDPA in Mazayjan plain, Fars province, Iran. Ecology, Environment and Conservation, 17(3): 489-594.
Nazari Samani A, Ahmadi H, Jafari M, Boggs G, Ghoddousi J, Malekian A. 2009. Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed). Journal of Asian Earth Sciences, 35(2): 180-189. doi:https://doi.org/10.1016/j.jseaes.2009.02.004.
Olaya V, Conrad O. 2009. Chapter 12 Geomorphometry in SAGA. In: Hengl T, Reuter HI (eds) Developments in Soil Science, vol 33. Elsevier, pp 293-308. https://doi.org/210.1016/S0166-2481(1008)00012-00013.
Parkner T, Page M, Marden M, Marutani T. 2007. Gully systems under undisturbed indigenous forest, East Coast Region, New Zealand. Geomorphology, 84(3): 241-253. doi:https://doi.org/10.1016/j.geomorph.2006.01.042.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3): 231-259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Planchon O, Darboux F. 2002. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 46(2): 159-176. doi:https://doi.org/10.1016/S0341-8162(01)00164-3.
Poesen J, Nachtergaele J, Verstraeten G, Valentin C. 2003. Gully erosion and environmental change: importance and research needs. CATENA, 50(2): 91-133. doi:https://doi.org/10.1016/S0341-8162(02)00143-1.
Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F. 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2): 1231-1258. doi:10.1007/s11069-016-2239-7.
Reddy Y, Sebastin A. 2006. Parameters for estimation of entropy to study price manipulation in stock market. In: 10th Capital Markets Conference, Indian Institute of Capital Markets Paper, Research publication university of Dehli. http://dx.doi.org/10.2139/ssrn.962329.
Shit PK, Paira R, Bhunia G, Maiti R. 2015. Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1(1-2): 2. doi:https://doi.org/10.1007/s40808-015-0001-x.
Soufi M. 2004. Morpho-climatic classification of gullies in Fars province, southwest of IR Iran. In: ISCO 2004 - 13th International Soil Conservation Organisation Conference – Brisbane, July 2004, Conserving Soil and Water for Society: Sharing Solutions, 4 p.
Vadon H. 2003. 3D Navigation over merged Panchromatic-Multispectral high resolution SPOT5 images. The international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5): W10.
Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. CATENA, 63(2): 132-153. doi:https://doi.org/10.1016/j.catena.2005.06.001.
Zakerinejad R, Maerker M. 2015. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards, 79(1): 25-50. doi:10.1007/s11069-015-1700-3.
Zakerinejad R, Märker M. 2014. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geografia Fisica e Dinamica Quaternaria, 37(1): 67-76. doi:https://doi.org/10.4461/GFDQ.2014.37.7.
Zakerinejad R, Omran A, Hochschild V, Maerker M. 2018. Assessment of gully erosion in relation to lithology in the Southwestern Zagros Mountains, Iran using ASTER data, GIS and stochastic modeling. Geografia Fisica Edinamica Quaternaria, 41(2): 95-104. doi:https://doi.org/10.4461/ GFDQ.2018.41.15.
Zevenbergen LW, Thorne CR. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1): 47-56. doi:https://doi.org/10.1002/esp.3290120107.
_||_Anderson RP, Elith J, H. Graham C, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129-151. doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.
Angileri SE, Conoscenti C, Hochschild V, Märker M, Rotigliano E, Agnesi V. 2016. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262: 61-76. doi:https://doi.org/10.1016/j.geomorph.2016.03.018.
Arabameri A, Cerda A, Tiefenbacher JP. 2019. Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water, 11(6): 1129. doi:https://doi.org/10.3390/w11061129.
Buitrago JY, Martínez LJ. 2016. Digital elevation models (DEM) used to assess soil erosion risks: a case study in Boyaca, Colombia. Agronomía Colombiana, 34(2): 239-249. doi:https://doi.org/10.15446/agron.colomb.v34n2.56145.
Burrough PA, McDonnell R, McDonnell RA, Lloyd CD. 2015. Principles of geographical information systems. Oxford university press, 330 p.
Conoscenti C, Agnesi V, Cama M, Caraballo‐Arias NA, Rotigliano E. 2018. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land degradation & development, 29(3): 724-736. doi:https://doi.org/10.1002/ldr.2772.
Entezari M, Maleki A, Moradi K, Olfati S. 2015. The study of Gully Erosion in Dyereh Catchment Using the Method of Weightal Modulation and Stream Power Index. Geographical Researches, 30(3): 297-312. (In Persian)
Ghorbani N, Zeinivand H, Haghizadeh A, Tahmasebi N. 2018. Performance evaluation of Dempster-Shafer model for erosion potential mapping in Kakareza watershed, Lorestan province. Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS Techniques in Natural Resource Science), 9(3): 100-114. (In Persian)
Kedari Tushar B, Balasubramani K, Gomathi M. 2017. Comparative Analysis of CARTOSAT, ASTER and SRTM Digital Elevation Models of Different Terrains for Extraction of Watershed Parameters. The Konkan Geographer, 17: 143-152.
Kheir RB, Wilson J, Deng Y. 2007. Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(12): 1770-1782. doi:https://doi.org/10.1002/esp.1501.
Köthe R, Lehmeier F. 1993. SAGA - Ein Programmsystem zur Automatischen Relief-Analyse. Zeitschrift für Angewandte Geographie, 4/1993: 11-21.
Le Houérou HN. 1996. Climate change, drought and desertification. Journal of Arid Environments, 34(2): 133-185. doi:https://doi.org/10.1006/jare.1996.0099.
Maerker M, Quénéhervé G, Bachofer F, Mori S. 2015. A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania. Natural Hazards, 79(1): 235-253. doi:https://doi.org/10.1007/s11069-015-1855-y.
Martı́nez-Casasnovas JA. 2003. A spatial information technology approach for the mapping and quantification of gully erosion. CATENA, 50(2): 293-308. doi:https://doi.org/10.1016/S0341-8162(02)00134-0.
Masoudi M, Zakerinejad R. 2011. A new model for assessment of erosion using desertification model of IMDPA in Mazayjan plain, Fars province, Iran. Ecology, Environment and Conservation, 17(3): 489-594.
Nazari Samani A, Ahmadi H, Jafari M, Boggs G, Ghoddousi J, Malekian A. 2009. Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed). Journal of Asian Earth Sciences, 35(2): 180-189. doi:https://doi.org/10.1016/j.jseaes.2009.02.004.
Olaya V, Conrad O. 2009. Chapter 12 Geomorphometry in SAGA. In: Hengl T, Reuter HI (eds) Developments in Soil Science, vol 33. Elsevier, pp 293-308. https://doi.org/210.1016/S0166-2481(1008)00012-00013.
Parkner T, Page M, Marden M, Marutani T. 2007. Gully systems under undisturbed indigenous forest, East Coast Region, New Zealand. Geomorphology, 84(3): 241-253. doi:https://doi.org/10.1016/j.geomorph.2006.01.042.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3): 231-259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Planchon O, Darboux F. 2002. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 46(2): 159-176. doi:https://doi.org/10.1016/S0341-8162(01)00164-3.
Poesen J, Nachtergaele J, Verstraeten G, Valentin C. 2003. Gully erosion and environmental change: importance and research needs. CATENA, 50(2): 91-133. doi:https://doi.org/10.1016/S0341-8162(02)00143-1.
Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F. 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2): 1231-1258. doi:10.1007/s11069-016-2239-7.
Reddy Y, Sebastin A. 2006. Parameters for estimation of entropy to study price manipulation in stock market. In: 10th Capital Markets Conference, Indian Institute of Capital Markets Paper, Research publication university of Dehli. http://dx.doi.org/10.2139/ssrn.962329.
Shit PK, Paira R, Bhunia G, Maiti R. 2015. Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1(1-2): 2. doi:https://doi.org/10.1007/s40808-015-0001-x.
Soufi M. 2004. Morpho-climatic classification of gullies in Fars province, southwest of IR Iran. In: ISCO 2004 - 13th International Soil Conservation Organisation Conference – Brisbane, July 2004, Conserving Soil and Water for Society: Sharing Solutions, 4 p.
Vadon H. 2003. 3D Navigation over merged Panchromatic-Multispectral high resolution SPOT5 images. The international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5): W10.
Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. CATENA, 63(2): 132-153. doi:https://doi.org/10.1016/j.catena.2005.06.001.
Zakerinejad R, Maerker M. 2015. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards, 79(1): 25-50. doi:10.1007/s11069-015-1700-3.
Zakerinejad R, Märker M. 2014. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geografia Fisica e Dinamica Quaternaria, 37(1): 67-76. doi:https://doi.org/10.4461/GFDQ.2014.37.7.
Zakerinejad R, Omran A, Hochschild V, Maerker M. 2018. Assessment of gully erosion in relation to lithology in the Southwestern Zagros Mountains, Iran using ASTER data, GIS and stochastic modeling. Geografia Fisica Edinamica Quaternaria, 41(2): 95-104. doi:https://doi.org/10.4461/ GFDQ.2018.41.15.
Zevenbergen LW, Thorne CR. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1): 47-56. doi:https://doi.org/10.1002/esp.3290120107.