برآورد دمای مزارع نیشکر با استفاده از الگوریتم پنجره مجزا و تصاویر سنجنده OLI ماهواره لندست 8
محورهای موضوعی : توسعه سیستم های مکانیشادمان ویسی 1 , عبدعلی ناصری 2 , سعید حمزه 3 , پوریا مرادی 4
1 - دانشجوی دکتری آبیاری و زهکشی، دانشگاه شهید چمران اهواز
2 - استاد دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز
3 - استادیار دانشکده جغرافیا، دانشگاه تهران
4 - کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه شهید چمران اهواز
کلید واژه:
چکیده مقاله :
دمای سطح زمین یکی از مهم ترین پارامترهای است که امروزه توسط باندهای حرارتی ماهواره ها و به کمک ابزار سنجش از دور قابل محاسبه است. اهمیت این موضوع زمانی آشکار می شود که اثر مستقیم دما، افزایش و یا کاهش میزان تبخیر و تعرق و در نتیجه تغییر در میزان رطوبت در دسترس گیاه را نشان می دهد. در این تحقیق دمای پوشش سبز گیاه نیشکر با استفاده از داده های ماهواره لندست 8 در هشت مزرعه از مزارع کشت و صنعت نیشکر سلمان فارسی (هر مزرعه پنج نقطه) جمعاً 40 نقطه که این نقاط در روزهای مختلف آبیاری بودند با استفاده از دماسنج مادون قرمز (که در بازه 8 تا 14 میکرومتر کار می کند)، اندازه گیری شد. نقاط انتخابی به منظور عدم ترکیب با پیکسل های فاقد پوشش گیاهی از لبه مزارع دارای فاصله 30 متری بودند. به منظور واسنجی الگوریتم پنجره مجزا از داده های بخار آب اتمسفر، قابلیت انتشار، قابلیت عبور اتمسفری و از تصاویر ماهواره لندست 8 دمای مزارع استخراج شد. نتایج نشان داد که محاسبه دمای پوشش سبز مزارع نیشکر در روزهای مختلف آبیاری با الگوریتم پنجره مجزا با دقت قابل قبول برآورد گردید. همچنین نتایج نشان داد که در نقاطی که پوشش گیاهی یکسان است، آبیاری عامل اصلی در تغییر مقادیر دما است. حداقل مجذور مربعات خطا و میانگین مربعات خطا بین دمای اندازه گیری شده میدانی و دمای استخراج شده از تصاویر ماهواره ای به ترتیب 925/0 و 766/0 درجه سانتیگراد محاسبه گردید.
Land Surface Temperature (LST) is one of important parameters that is measured using Remote-sensing tools and thermal bands of satellites. The importance of this issue is revealed when direct effects of temperature are shown on the increase and decrease of evaporation, evapotranspiration and as a result, the moisture content changes in the plant. In this study, the temperature of sugarcane canopy cover was measured by LandSat 8 satellite data in 8 sugarcane fields out of Salman Farsi Sugacane Industry involving 5 points from each field (totally 40 points); these points were irrigated in different days and measured by the infrared thermometer. The points were selected at the edges of fields with the intervals of 30 m in order to avoid the combination of them with the pixels with no vegetation. To calibrate the Split Window (SW) algorithm, the input data of water evaporation, emissivity and transmittance as well as LandSat 8 satellite images were applied. Results have shown that the estimation of vegetation temperature of sugarcane fields in different days of irrigation was of an acceptable accuracy. Also, in the points with the same vegetation, irrigation is the main factor for the changes of temperature. In this research, Residual Mean Error Square (RMSe), and Mean Average Error for the measured field temperature and extracted one by the satellite images were given as 0.925 and 0.766 °C, respectively.
