Semi-Blind Separation of Multiple Asynchronous Wideband Frequency Hopping Signals Based on MWC and Spectral Entropy Method
محورهای موضوعی : Majlesi Journal of Telecommunication DevicesMohsen Rezaee 1 , Morteza Babaei 2 , Mohammadreza Motedayen 3
1 - Assistant Professor ICT Research Institute, Tehran, Iran
2 - Assistant Professor Faculty of Electrical Engineering Department, Imam Hossein University, Tehran, Iran
3 - Phd Candidate، Imam Hossein Comprehensive University
کلید واژه: Semi-Blind Separation, Modulated Wideband Converter, Time-Frequency Distribution, Spectral Entropy, Wideband Frequency-Hopping Signal.,
چکیده مقاله :
Wideband Frequency Hopping Spread Spectrum (FHSS) communications are widely used in both military and commercial applications. In military applications, it is very important to investigate these communications, especially when frequency hopping signals are received simultaneously by a single antenna. This paper investigates the problem of estimating interfering wideband asynchronous frequency hopping (FH) signals parameters with the same hop rate, and using narrow-band receivers. Due to minimal knowledge about the transmitted signals, the problem is analyzed in semi-blind mode. For this purpose, time-frequency (TF) processing has been applied to the modulated wideband converter (MWC) output. The proposed method consists of two stages; In the first stage, frequency-hopping signals with different amplitudes are received by a single antenna. By passing through baseband receivers, the TF distribution of the converter's output signal is obtained. In the next stage, by computing instantaneous spectral entropy (SE), and finding the local maxima in the spectrum, the hop time of each signal is obtained. We use MWC for sub-Nyquist sampling and simultaneous extraction of time and frequency information from signals while eliminating irrelevant signals. The results obtained from estimating hop time parameters demonstrate improved performance compared to other traditional source separation methods such as sparse linear regression (SLR). Based on evaluation metrics such as root mean squared error (RMSE), in lower signal-to-noise ratio (SNR) values, the amount of error has been substantially reduced.
Wideband Frequency Hopping Spread Spectrum (FHSS) communications are widely used in both military and commercial applications. In military applications, it is very important to investigate these communications, especially when frequency hopping signals are received simultaneously by a single antenna. This paper investigates the problem of estimating interfering wideband asynchronous frequency hopping (FH) signals parameters with the same hop rate, and using narrow-band receivers. Due to minimal knowledge about the transmitted signals, the problem is analyzed in semi-blind mode. For this purpose, time-frequency (TF) processing has been applied to the modulated wideband converter (MWC) output. The proposed method consists of two stages; In the first stage, frequency-hopping signals with different amplitudes are received by a single antenna. By passing through baseband receivers, the TF distribution of the converter's output signal is obtained. In the next stage, by computing instantaneous spectral entropy (SE), and finding the local maxima in the spectrum, the hop time of each signal is obtained. We use MWC for sub-Nyquist sampling and simultaneous extraction of time and frequency information from signals while eliminating irrelevant signals. The results obtained from estimating hop time parameters demonstrate improved performance compared to other traditional source separation methods such as sparse linear regression (SLR). Based on evaluation metrics such as root mean squared error (RMSE), in lower signal-to-noise ratio (SNR) values, the amount of error has been substantially reduced.
[1] Yun-Bin، Y. and T. Qing-Min ، “DOA Estimation Methods of FH Signals and Follower Gamming Signals”، J. Nav. Univ. Eng 28، pp. 228-234، 2016.
[2] R. L. Peterson، D. E. Borth، and R. E. Ziemer، “An Introduction to Spread-Spectrum Communications”، Prentice-Hall، Inc، 1995.
[3] S. Barbarossa and A. Scaglione، "Parameter Estimation of Spread Spectrum Frequency-Hopping Signals Using Time-Frequency Distributions، “ in Signal Processing Advances in Wireless Communications، First IEEE Signal Processing Workshop on، Paris، France، pp. 213-216، 1997.
[4] H. Alizadeh, M. Rezaee and M. Babaei, “Amplitude Symmetry Detection for Interfering Signals in CNC Satellite Communications”، Majlesi Journal of Telecommunication Devices (MJTD), Volume 12, Issue3, Pages 149-159, September 2023.
[5] Y. Yuan، Z. Huang، and X. Wang، ``Detection of frequency-hopping radio frequency-switch transients،'' Electron. Lett.، vol. 50، pp. 956_957، Jun. 2014.
[6] J. Viterbi، “Spread spectrum communications: myths and realities،” IEEE Communications Magazine، vol. 40، no. 5، pp.34–41، 2002.
[7] X. Liu، N. D. Sidiropoulos، and A. Swami، “Joint hop timing and frequency estimation for collision resolution in FH networks،” IEEE Transactions onWireless Communications، vol. 4، no. 6، pp. 3063–3073، 2005.
[8] J. Wan، D. Zhang، W. Xu، and Q. Guo، “ Parameter Estimation of Multi-Frequency Hopping Signals Based on Space-Time-Frequency Distribution”، Symmetry، Vol. 11، No.5، pp.648، 2019.
[9] L. Wan، X. Kong، and F. Xia، "Joint Range-Doppler-Angle Estimation for Intelligent Tracking of Moving Aerial Targets،" IEEE Internet of Things Journal، vol. 5، pp. 1625-1636، 2018.
[10] S. Tomar and P. Sumathi، "Amplitude and Frequency Estimation of Exponentially Decaying Sinusoids،" IEEE Transactions on Instrumentation and Measurement، vol.67، pp.229-237، 2018.
[11] L. Wan، G. Han، L. Shu، S. Chan، and T. Zhu، "The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density،" IEEE Transactions on Industrial Informatics، vol. 12، pp. 2353-2364، 2016.
[12] D. Angelosante، G. B. Giannakis، and N. D. Sidiropoulos، "Estimating Multiple Frequency-Hopping Signal Parameters via Sparse Linear Regression،" IEEE Transactions on Signal Processing،vol.58، pp. 5044-5056، Oct 2010.
[13] Z. C. Sha، Z. T. Huang، Y. Y. Zhou، and F. H. Wang، "Frequency-hopping signals sorting based on underdetermined blind source separation،" Iet Communications، vol. 7، pp. 1456-1464، 2013.
[14] L. Wan، G. Han، L. Shu، S. Chan، and N. Feng، "PD Source Diagnosis and Localization in Industrial High-Voltage Insulation System via Multimodal Joint Sparse Representation،" IEEE Transactions on Industrial Electronics، vol. 63، pp. 2506-2516، 2016.
[15] L. Wan، G. Han، L. Shu، and N. Feng، “The Critical Patients Localization Algorithm Using Sparse Representation for Mixed Signals in Emergency Healthcare System”، IEEE Systems Journal، vol. 12، pp. 52-63، 2018
[16] L. Wan، G. Han، L. Shu، N. Feng، C. Zhu، and J. Lloret، "Distributed Parameter Estimation for Mobile Wireless Sensor Network Based on Cloud Computing in Battlefield Surveillance System”، IEEE Access، vol. 3، pp. 1729-1739، 2015.
[17] M. Mishali، and Y. C. Eldar، “From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals”، IEEE Journal of Selected Topics in Signal Processing، Vol. 4، No. 2، pp. 375-391، 2010.
[18] E. Baransky، G. Itzhak، N. Wagner، I. Shmuel، E. Shoshan، and Y. Eldar، “ Sub-Nyquist Radar Prototype: Hardware and Algorithm”، IEEE Transactions on Aerospace and Electronic Systems، Vol. 50، NO. 2، pp. 809-822، 2014.
[19] S. S. Ioushua، O. Yair، D. Cohen، and Y. C. Eldar، “CaSCADE: Compressed Carrier and DOA Estimation”، IEEE Transactions on Signal Processing، Vol. 65، No.10، pp. 2645-2658، 2017.
[20] Z. Lei، Y. Peng، Z. Linhua، X. Hui، and D. Hong، “Frequency Hopping Signals Tracking and Sorting Based on Dynamic Programming Modulated Wideband Converters”، Applied Sciences، Vol. 9، No. 14، pp. 2906، 2019.
[21] Z. Lei، P. Yang، and L. Zheng، “Detection and Frequency Estimation of Frequency Hopping Spread Spectrum Signals Based on Channelized Modulated Wideb and Converters”، Electronics، Vol. 7، No.9، pp. 170، 2018.
[22] B. Boashash، “Time‐Frequency Signal Analysis and Processing: A Comprehensive Review”، 2nd ed.: Elsevier Science، eBook، 2015.
[23] Y. Lei and Y. Wu، “A New Hop Rate Estimation Method for High-Speed Frequency-Hopping Signals”، in 2008 11th IEEE Singapore International Conference on Communication Systems، Guangzhou، China، pp.1330-1333، 2008.
[24] T. C. Chen، "Joint Signal Parameter Estimation of Frequency-Hopping Communications”، Iet Communications، vol. 6، pp. 381-389، Mar 2012.
[25] Y. Wang، Y. Lin، & X. Chi، “A Parameter Estimation Method of Frequency Hopping Signal Based on Sparse Time-Frequency Method”، In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)، pp. 1-5، November 2018.
[26] R.G. Stockwell، L. Mansinha، R.P. Lowe، “Localization of the complex spectrum: the S transform”، IEEE Trans. Signal Process، vol. 44، no. 4، pp. 998-1001، 1996.
[27] W. Yang، M. Li، & L. Wang، H. Zhang، “Parameter Estimation of Frequency Hopping Signals Based on Time Frequency Analysis”، In Proceedings of the 26th conference of spacecraft TT\&C technology in China، pp. 131–140، 2013.
[28] Q. Zhang، Y. Liu، X. Zhang، “Parameter Estimation of Non_modulated or Modulated Frequency-Hopping Signals”، IEEE International Conference on Signal Processing، Communications and Computing. IEEE، pp. 1-4، 2016.
[29] L. Deng، T. Zhang، J. Jin، “Application of Rearrangement Spectrogram in Parameter Estimation of Frequency-Hopping Signal”، Computer Engineering and Design، Vol. 34، No. 10، pp. 3422–3426، 2013.
[30] T. Jo Lynn، “Adaptive Optimal Kernel Smooth‐Windowed Wigner‐Ville Distribution for Digital Communication Signal، EURASIP Journal on Advances in Signal Processing، 2009.
[31] Liang، Z.-J.; Lv، M، “ A joint rapid parameter estimate method of frequency-hopping signals”، In Proceedings of the 2012 International Conference on Control Engineering and Communication Technology، Shenyang، Liaoning، China، 7–9 December، pp. 952–954، 2012.
[32] Zhang، H.-X.; Chen، C.-F.; Wang، H.-Q، “A parameter estimation method for FH signal based on SPWVD”، J. China Univ. Posts Telecommun، 18، pp. 133–136، 2011.
[33] Y. Yang، X. Sun، and Z. Zhong، “A Parameter Estimation Algorithm for Frequency-Hopping Signals with a Stable Noise”، C IEEE 3rd Advanced Information Technology، Electronic and Automation Control Conference (IAEAC)، pp. 1898-1904، 2018.
[34] W. H. Fu، Y. Q. Hei، and X. H. Li، “UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals”، Journal of Systems Engineering and Electronics، vol. 25، no. 6، pp. 911–920، 2014.
[35] W. H. Fu، W. Lu، K. Jia، et al، “Blind Parameter Estimation Algorithm for Frequency Hopping Signals Based on STFT and SPWVD”، Journal of Huazhong University of Science and Technology، vol. 42، no. 9، pp. 59–63، 2014.
[36] Y. Li، X. Guo، F. Yu، and Q. Sun، “A New Parameter Estimation Method for Frequency Hopping Signals”، IEEE USNC-URSI Radio Science Meeting، (Joint with AP-S Symposium)، pp. 51-52، 2018.
[37] M. Khazaee، and S. Akhlaghi، “Direction-of-Arrival and Hop Tracking of A Special User in A FH Multi-User Based Network Using Uniformly Linear Arrays”، Journal of Ra’ad،Vol. 5، No. 12، pp. 10-26، 2016. (In Persian)
[38] J. P. Changeux، and S. J. Edelstein، “ Allosteric mechanisms of signal transduction”، Science، Vol. 308، No. 5727، pp. 1424-1428، 2005.
[39] M. Mishali، Y. C. Eldar، D. Oleg، and Sh. Eli، “Xampling: Analog to digital at Sub-Nyquist Rates”، IET Circuits، Devices & Systems Vol. 5، No. 1، pp. 8-20، 2011.
[40] Yang، W.-G.، Li، M.، & Wang، L.-B.، et al ، “Parameter estimation of frequency hopping signals based on time frequency analysis”، In Proceedings of the 26th conference of spacecraft TT\&C technology in China، pp. 131–140، 2013
[41] Guido، R.C.; Addison، P.S.; Walker، J، “Introducing Wavelets and Time-Frequency Analysis Wavelet-Related Technologies in Biomedical Signal Processing”، IEEE Eng. Med. Biol، vol. 28، no. 13، 2009.
[42] Feng، T.; Yuan، C.-W، “Blind parameter estimation of frequency-hopping signals based on the time–frequency distribution maxima”، Acta Electron، vol. 39، pp. 2921–2925، 2012
[43] Pan، Y. N.، J. Chen، and X. L. Li، “Spectral Entropy: A Complementary Index for Rolling Element Bearing Performance Degradation Assessment”، Proceedings of the Institution of Mechanical Engineers، Part C: Journal of Mechanical Engineering Science. Vol. 223، pp. 1223–1231، 2009.
[44] Sharma، V.، and A. Parey، “A Review of Gear Fault Diagnosis Using Various Condition Indicators”، Procedia Engineering. Vol. 144، pp. 253–263، 2016.
[45] Vakkuri، A.، A. Yli‐Hankala، P. Talja، S. Mustola، H. Tolvanen‐Laakso، T. Sampson، and H. Viertiö‐Oja، “Time‐Frequency Balanced Spectral Entropy as a Measure of Anesthetic Drug Effect in Central Nervous System during Sevoflurane، Propofol، and Thiopental Anesthesia”، Acta Anaesthesiologica Scandinavica. Vol. 48، pp. 145–153، 2004.
[46] L. Zhao، L. Wang، G. Bi، L. Zhang، and H. Zhang، “Robust Frequency-Hopping Spectrum Estimation Based on Sparse Bayesian Method”، IEEE Transactions on Wireless Communications، Vol. 14، No. 2، pp. 781-793، 2014.
[47] Civera, Marco, and Cecilia Surace، “Instantaneous spectral entropy: An application for the online monitoring of multi-storey frame structures”، Buildings, Vol.12, No. 3، pp, 310, 2022.