بررسی اثر نانو سلنیوم بر جوانه زنی بذر گوجه گیلاسی(Solanum lycopersicum L. var.cerasiforme) در شرایط آبیاری و تنش آبی
محورهای موضوعی :
فیزیولوژی گیاهی
مریم نیسانیان
1
,
علیرضا ایرانبخش
2
,
رحیم احمدوند
3
,
زهرا اوراقی اردبیلی
4
,
مصطفی عبادی
5
1 - دکتری، گروه زیستشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد، گروه زیستشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
4 - دانشیار، گروه زیستشناسی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران
5 - استادیار، گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
تاریخ دریافت : 1401/11/30
تاریخ پذیرش : 1402/03/27
تاریخ انتشار : 1402/04/01
کلید واژه:
نانوسلنیوم,
تنش خشکی,
طول دانه رست,
درصد جوانه زنی,
چکیده مقاله :
سلنیوم عنصری سودمند با خواص آنتی اکسیدانی که سبب افزایش رشد و بردباری گیاهان در شرایط تنش های محیطی می شود. این تحقیق جهت بررسی اثر نانو ذره سلنیوم بر برخی خصوصیات جوانه زنی گیاه گوجه گیلاسی(Solanum lycopersicum L. var.cerasiforme) تحت شرایط آبیاری نرمال و تنش آبی بصورت طرح کاملاً تصادفی با اعمال 4 سطح تیمار شامل (صفر، 2، 4 و 10 میلی گرم بر لیتر) سلنیوم و اثرمتقابل سلنیوم بر خشکی (PEG 4%) با 3 بار تکرار انجام شد. برای این منظور پس از ضد عفونی کردن بذرها در پلیت های حاوی کاغذ صافی قرار داده شدند و سلنیوم محلول با غلظت های مشخص (سلنات سدیم به عنوان شاهد بالک و نانوسلنیوم) به محیط رشد بذرها، هر سه روزاضافه شد. 2 روز پس از گذشت دومین تیمار سلنیوم، تنش آبی بوسیله پلی اتیلن گلیکول 4 درصد اعمال شد. صفات مورد ارزیابی شامل درصد و سرعت جوانه زنی، طول ریشه چه و ساقه چه، وزن تر و خشک دانه رست بود. نتایج نشان داد که بیشترین میزان طول ساقه چه، دانه رست و وزن تر در تیمارهای 4 میلی گرم بر لیتر سلنیوم (سلنات سدیم و نانو سلنیوم) در شرایط آبیاری نرمال و تنش آبی و کمترین میزان طول ساقه چه، ریشه چه، دانه رست، وزن تر، درصد و سرعت جوانه زنی در غلظت بالای سلنیوم (10 میلی گرم بر لیتر) در مقایسه با شاهد در شرایط آبیاری نرمال و تنش آبی مشاهده شد. بطورکلی تیمار 4 میلیگرم بر لیتر سلنیوم سبب افزایش تحمل گیاه به تنش خشکی و رشد گیاهچه گردید.
منابع و مأخذ:
Ahmad, M S , Hussain, M., Ashraf, M., Ahmad, R. and M Y, Ashraf. 2009. Effect of nickel on seed germinability of some elite sunflower (Helianthus annus L.). Pakistan Journal of Botany, 41: 1871-1882.
Ahmad, P., Abdel Latef, A , Hashem, A., Abd_Allah, E F., Gucel, S. and L S P, Tran. 2016. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea. Front. Plant Sci., https://doi.org/10.3389/fpls.2016.00347.
Aroiee, H., Shekari, L. and A, Mirshekari. 2019. Effects of selenium on damage of heavy metals in germination, growth and antioxidant activities of cucumber (Cucumis sativus) seedling. Iranian Journal of Seed Science and Research, 6(2): 269-286.
Arzoo, A., Kumar, S., Ashirbad, N., Kunja, M. and B, Satapathy. 2014. Impact of nickel on germination, seedling growth and biochemical changes of Macrotyloma uniflorum (Lam) verdc. International Journal of Biosciences, 5(9): 321-331.
Babajani, A., Iranbakhsh, A., Ardebili, Z O. and B, Eslami. 2019a. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci. Poll. Res, 26(24): 24430-24444.
Babajani, A., Iranbakhsh, A., Ardebili, Z O. and B, Eslami. 2019b. Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chem. Plasma Process, 39(1): 21-34.
Bhardwaj, P., Chaturvedi, A K. and P, Prasad. 2009. Effect of enhanced lead and cadmium in soil on physiologicaland biochemical attributes of (Phaselous vulgaris L.). Nature and Science, 7(8): 63-75.
Bradford, K J. 1995. Water relations in seed germination. In "Seed Development and Germination" (J. Kigel and G. Galili, Eds.). Marcel dekkerinc. New York, 351-369.
Celikel, F G. and M S, Reid. 2002. Postharvest handling of stock (Matthiola incana). Hort Sci, 37(1): 144-147.
Dehghani Bidgoli, R. 2018. Effect of Nanoparticles of selenium (Nano Se) and Rice Bran Extract on Germination and Some Morphophysiological Characteristics of (Astragalus adscendens Boissier). Journal of Developmental Biology, 10(2).
Djanaguiraman, M., Belliraj, N., Bossmann, S. and P.V, Prasad. 2018. High temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega.; 3(3): 2479–2491.
Fahad, , Ali, A., Bajwa, A., Nazir, U A., Anjum, S., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M Z., Alharby, H., Wu, C., D Wang. and J, Huang. 2017. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci, 8: 1147.
Gui, Y., Sheteiwy, M S., Zhu, S., Batool, A. and Y, Xiong. 2020. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environmental and Experimental Botany, 181, 104287.
Haghighi, M., Abolghasemi, R A. and J, Teixeira da Silva. 2014. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Scientia Horticulturae, 178:231-240.
Hajiboland, R. and N, Keivanfar. 2012. Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus L.) plants. Acta Agriculturae Slovenica, 99(1): 13–19.
Handa, N., Kohli, S K., Sharma, A., Thukral, A K., Bhardwaj, R. and E F, Abd_Allah. 2019. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L plants. Environ Exp Bot, 161: 180–192. https:// doi.org/10.1016/j.envexpbot.2018.11.009.
Hasanuzzaman, M., Hossain, M A. and M, Fujita. 2010. Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of plant sciences, 5 (4): 354-375.
Hoshmandfar, A. and F, Moraghebi. Effect of mixed cadmium, copper, nickel and zinc onseed germination and seedling growth of safflower. African Journal of Agricultural Research, 6 (5): 1182-1187.
Hu, T., Li, H., Li, J., Zhao, G., Wu, W., Liu, L., Wang, Q. And Y, Guo. 2018. Absorption and bio-transformation of Selenium nanoparticles by wheat seedlings (Triticum aestivum L). Plant Sci, 9: 597.
Hussein, H A M., Darwesh, O. B. and B, Mekki. 2019. Environ mentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatalysis and Agricultural Biotechnology, 18: 101080.
Kabir, M., Iqbal, M Z., Shafigh, M. and Z R, Faroogi. 2008. Reduction in germination and seedling growth of Thespesia populnea L. caused by lead and cadmium treatments. Pakistan Journal of Botany, 40(6): 2419-2426.
Kaklewski, K., Nowak, J. and M, Ligocki. 2008. Effects of selenium content in green parts of plants on the amount of ATP and ascorbate–glutathione cycle enzyme activity at various growth stages of wheat and oilseed rape. Journal of Plant Physiology, 165: 1011-1022.
Karmollachaab, A., Bakhshandeh, A., Gharineh, M H., Moradi Telavat, M R. and G, Fathi. 2015. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions. JCPP,4 (14) :133-145.
Kastori, R., Petrović, N., Gašić, O. and V, Janjatović. 2012. Uticaj olova na akumulaciju i distribuciju mineralnih materijau soji (Glycine max. (L.) Merr). Proceedings for Natural Sciences, Srpska, 80: 55–65.
Kaur, S A K., Gupta. and N, Kaur. 2003. Priming of chickpea seeds with water and mannitol overcomes the effect of salt stress on seedling growth. Chickpea and Pigeonpea Newsl, 10: 18-20.
Khattab, N M. 2004. A novel solar-powered adsorption refrigeration module. Applied Thermal Engineering, 24: 2747–2760.
Kuznetsov, V V., Kholodova, V P. and B A, Yagodin. 2003. Selenium regulates the waterstatus of plants exposed todrought. Doklady Biolological Science, 390: 266-268.
Li, C., Ji, J., Wang, G., Li, Z., Wang, Y. and Y, Fan. 2020. Over-Expression of LcPDS, LcZDS, and LcCRTISO, Genes from Wolfberry for Carotenoid Biosynthesis, Enhanced Carotenoid Accumulation, and Salt Tolerance in Tobacco. Front Plant Sci, 11: p119.
Manikavelu, A., Nadarajan, N., Ganesh, S K., Gnanamalar, R P. and R C, Babu. 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul, 50, 121–138. doi: 10.1007/s10725-006-9109-3
Mihalescu, L., Mare-Rosca, O E., Marian, M. and C F, Blidar. 2010. Research on the growth intensity of the Zea mays L. plantlets aerial parts under Cadmium treatment.
Moller, I M., Jensen, P E. and A, Hansson. 2007. Oxidative modifications to cellular components in plants. Ann. Rev. Biol, 58, 459–481. doi: 10.1146/annurev.arplant.58.032806.103946
Navaz, F., Ashraf, M Y., Ahmad, R. and E A, Waraich. 2013. Selenium (Se) Seed priming induced growth and biochemical changes in wheat under water deficit conditions. Trace Element. Res, 151: 284-293.
Nazerieh, H., Ardebili, Z O. and A, Iranbakhsh. 2018. Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric. Slov, 111(2): 357-368.
Okcu, G., Kaya, M D. and M, Atak. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum). Turk. J. Agric. For, 29, 237–242.
Pennanen, A., Xue, T. and H, Hartikainen. 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. Appl. Bot. 76: 66- 76.
Radha, J., Srivastava, S., Solomon, S., Shrivastava, A K. and A, Chandra. 2010. Impact of excess zinc on growthparameters cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp). Acta Physiology Plant, 32: 979-986.
Ramos, S J., Faquin, V., Guilherme, L R G., Castro, E M., Ávila, FW., Carvalho, G S., Bastos, C E A. and C, Oliveira. 2010. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ, 56, (12): 584–588.
Rı´os, J., Blasco, B., Cervilla, L., Rosales, M., Sanchez-Rodriguez, E., Romero, L. and J M, Ruiz. 2008. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology, 107-116.
Safari, M., Ardebili, Z O. and A, Iranbakhsh. 2018. Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum). Acta Physiol. Plant, 40(6): 117.
Saffaryazdi, A., Lahouti, M. and A, Ganjali. 2012. Effect of different concentrations of selenium on morphophysiological characteristics on spinach Spinaciaoleraceae. Journal of Horticultural Science (Agricultural Science and Technology), 26 (3): 300-292.
Sajedi, N A., Ardakani, M R., Madani, H., Naderi, A. and M, Miransari. 2011. The effect of selenium and other micronutrients on the antioxidant activity and yield of corn (zea mays under drought stress. Physiol. Mol. Biol. Plants, 17(3):215-222.
Shafiq, M., Iqbal, M Z. and M, Athar. 2008, Effect of lead and cadmium germination and seedling growth of Leucaena leucocephala. Journal of Environmental Science and Management, 12(2): 61-66.
Sharifi, P., Matlabi, A., Hadi, H. and H, Mohamad Alipor. 2010. Effect of different concentrations cadmium chloride on germination, growth parameters and soluble protein in seedling of lentils. The First National Conference on Sustainable Agriculture and Healthy Crop Production. Agricultural and Natural Resources Investigation Center in Isfahan, http://www.civilica.com/Paper-SACP01-SACP01_269.htm.
Sheteiwy, M S., Gong, D., Gao, Y., Pan, R., Hu, J. and Y, Guan. 2018. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environmental and Experimental Botany, 153: 236–248.
Sotoodehnia-Korani, S., Iranbakhsh, A., Ebadi, M., Majd, A. and Z O, Ardebili. 2020. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environmental Pollution, p114727. https://doi.org/10.1016/j.envpol.2020.114727.
Teimouri, S., Hasanpour, J., Tajali, A A. 2013. Effect of Selenium spraying on yield and growth indices of Wheat (Triticum aestivum ) under drought stress condition. International journal of Advanced Biological and Biomedical Research, 2(1): 2091-2103.
Ulhassan, Z., Ali, S A., Gill, R M., Mwamba, T., Abid, M., Li, L., Zhang, N. and W, Zhou. 2018. Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling. Ecotoxicology and Environmental Safety, 161: 634–647.
Wang, C. 2011. Water-stress mitigation by selenium in Trifolium repens L. Plant Nutr. Soil Sci, 174: 276–282.
Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J C. and B, Xing. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental science & technology, 46 (8): 4434-4441.
Xiaoqin, Y., Jianzhou, C. and. W, Guangyin. 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiologiae Plantarum, 31: 1031–1036
Yao, X J., Chu, X., He. and C, Ba. 2011. Protective Role of selenium in Wheat seedlings Subjected to Enhanced UVB Radiation. Russian. J. Plant Physiol, 58: 283–289
Zahedi, S M., Abdelrahman, M., Hosseini, M S., Hoveizeh, N F. and L S P, Tran. 2019. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Poll, 253: 246–258.
Zahedi, S M., Abdelrahman, M., Hosseini, M S., Hoveizeh, N F. and L S P, Tran. 2020. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut, 253: 246–258.
Zahedi, S M., Hosseini, M S., Daneshvar Hakimi Meybodi, N. and W, Peijnenburg. 2021. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture, https://doi.org/10.1002/jsfa.11167.
Zeid, I M. and Z A, Shedeed. 2006. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 50: 635–640.