القا تغییرات بیان برخی ژنهای آکواپورین گیاه گندم (.Triticum aestivum L) در پاسخ به همزیستی میکوریز آرباسکولار
محورهای موضوعی : بیوتکنولوژیمریم اسدالهی 1 , علیرضا ایرانبخش 2 , رحیم احمدوند 3 , ایرج مهرگان 4 , مصطفی عبادی 5
1 - دانشجوی دکتری، گروه زیستشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد، گروه زیستشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
4 - دانشیار، گروه زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - استادیار، گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
کلید واژه: انتقال آب, گندم, میکوریزا, آکوآپورین, همزیستی,
چکیده مقاله :
آکواپورین ها تقریباً در تمام موجودات زنده وجود داشته و در تنظیم پدیده های مختلف فیزیولوژیکی نقش دارند. آکواپورین ها (AQP) فقط کانال های آب نیستند بلکه پروتئین های غشایی چند منظوره هستند. این تحقیق به منظور بررسی بیان برخی ژن های آکوآپورین در گیاه گندم شامل ژنهای PIP2-6, PIP2-1, PIP2-5, PIP1-3 ، NIP1-3 و NIP1-4 در پاسخ به همزیستی ریشه گیاه گندم با قارچ Glomus mosseae انجام شد. نتایج نشان داد که همزیستی میکوریزایی موجب کاهش بیان ژنهای آکوآپورین PIP2-6 و PIP2-1 شد. در پاسخ به همزیستی میکورایزایی، بیان ژن های PIP2-5 و PIP1-3 نیز روند کاهش مشابهی را نسبت به شاهد نشان دادند. برخلاف این 4 ژن، همزیستی میکوریزایی اثرات تنظیمی تحریکی را بر بیان ژنهای NIP1-3 و NIP1-4 در پاسخ به همزیستی میکوریزایی داشت. همچنین بررسی های آماری نشان داد که بین بیان ژن های مورد ارزیابی همبستگی معنیداری وجود داشته بهطوریکه بین ژن های NIP1-3 و NIP1-4 همبستگی معنی دار مثبت وجود داشته درحالیکه بین این ژن ها و سایر ژنهای مورد ارزیابی همبستگی منفی معنی داری وجود داشت. بین ژنهای PIP2-6, PIP2-1, PIP2-5, PIP1-3 همبستگی قوی مثبت معنی داری وجود داشت. این نتایج دلالت بر آن دارد که اثر میکوریزا بسته به نوع میکوریزا می تواند متغیر باشد.
Aquaporins exist in almost all living organisms and play a role in regulating various physiological phenomena. Aquaporins (AQP) are not only water channels but also multifunctional membrane proteins. This study was conducted to investigate the effect of arbuscular mycorrhizal symbiosis on the expressions of some aquaporin genes in wheat plants. The expression of several aquaporins, including PIP2-6, PIP2-1, PIP2-5, PIP1-3, NIP1-3, and NIP1-4 in response to the symbiosis of wheat roots with Glomus mosseae fungus was evaluated by real-time PCR method. Mycorrhizal symbiosis down-regulated the expression of PIP2-6 and PIP2-1 genes. In response to the mycorrhizal symbiosis, the expression of PIP2-5 and PIP1-3 genes also showed a similar down-regulation trend compared with the control. In contrary, mycorrhizal symbiosis up-regulated the expression of NIP1-3 and NIP1-4 genes in response to the mycorrhizal symbiosis. Statistical analysis also showed that there is a significant correlation between the expressions of the genes evaluated. There was a significant positive correlation between NIP1-3 and NIP1-4 genes, while they displayed a significant negative correlation with other target genes. There was a significant positive correlation between PIP2-6, PIP2-1, PIP2-5, and PIP1-3 genes. These results indicate that the effect of mycorrhiza can vary depending on the type of mycorrhiza.
1) Ahmed, S., Kouser, S., Asgher, M. and S.G, Gandhi. 2021. Plant aquaporins: A frontward to make crop plants drought resistant. Physiologia Plantarum, 172(2): 1089-1105.
2) Basu, S., Rabara, R.C. and S, Negi. 2018. AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 102: 36-45.
3) Boyno, G. and S, Demir. 2022. Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis, 86(2): 155-168.
4) Cavagnaro, T.R., Bender, S.F., Asghari, H.R. and M.G, van der Heijden. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science, 20(5): 283-290.
5) Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I. and P, Cascone. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol, 171: 1009–1023.
6) Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V. and S, Svistoonoff. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10), p.370.
7) He, F., Zhang, H. and M, Tang. 2016. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza, 26: 311-323.
8) Jia-Dong, H., Tao, D., Hui-Hui, W., Ying-Ning, Z., Qiang-Sheng, W. and K, Kamil. 2019. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64-69.
9) Keymer, A. and C, Gutjahr. 2018. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion in Plant Biology, 44:137-144.
10) Li, G., Chen, T., Zhang, Z., Li, B. and S, Tian. 2020. Roles of aquaporins in plant-pathogen interaction. Plants, 9(9): 1134.
11) Liu, T., Li, Z., Hui, C., Tang, M. and H, Zhang. 2016. Effect of Rhizophagus irregularis on osmotic adjustment, antioxidation and aquaporin PIP genes expression of Populus× canadensis ‘Neva’under drought stress. Acta Physiol Plant, 38(8): 191.
12) Patel, J. and A, Mishra. 2021. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root‐architecture and photosynthesis. Physiologia Plantarum, 172(2): 1030-1044.
13) Quiroga, G., Erice, G., Aroca, R., Chaumont, F. and J.M, Ruiz-Lozano. 2017. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Frontiers in plant science, 8: 1056.
14) Quiroga, G., Erice, G., Ding, L., Chaumont, F., Aroca, R. and J.M, Ruiz‐Lozano. 2019. The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. Plant, Cell & Environment, 42(7): 2274-2290.
15) Quiroga, G., Erice, G., Aroca, R., Delgado-Huertas, A. and J.M, Ruiz-Lozano. 2020. Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. Plants, 9(2), p.148.
16) Santander, C., Aroca, R., Cartes, P., Vidal, G. and P, Cornejo. 2021. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiology and Biochemistry, 158: 396-409.
17) Schenck, N.C. 1982. Methods and Principles of Mycorrhizal Research. The American Phytopathological Society.
18) Shivaraj, S.M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., Ram, H., Sonah, H., Singla-Pareek, S.L., Sharma, T.R. and R, Deshmukh. 2021. Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 184: 104367.
19) Singh, R.K., Deshmukh, R., Muthamilarasan, M., Rani, R. and M, Prasad. 2020. Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiology and Biochemistry, 149:178-189.
20) Teste, F.P., Jones, M.D. and I.A, Dickie. 2020. Dual‐mycorrhizal plants: their ecology and relevance. New Phytologist, 225(5): 1835-1851.
21) Uehlein, N., Fileschi, K., Eckert, M., Bienert, G.P., Bertl, A. and R, Kaldenhoff. 2007. Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry, 68(1):122-129.
22) Wang, L.L., Chen, A.P., Zhong, N.Q., Liu, N., Wu, X.M., Wang, F., Yang, C.L., Romero, M.F. and G.X, Xia. 2014. The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses. Plant and Cell Physiology, 55(1): 148-161.
23) Wang, M., Ding, L., Gao, L., Li, Y., Shen, Q. and S, Guo. 2016. The interactions of aquaporins and mineral nutrients in higher plants. International Journal of Molecular Sciences, 17(8): 1229.
24) Wang, R., Wang, M., Chen, K., Wang, S., Mur, L.A.J. and S, Guo. 2018. Exploring the roles of aquaporins in plant–microbe interactions. Cells, 7(12): 267.
25) Watts‐Williams, S.J., Cavagnaro, T.R. and S.D, Tyerman. 2019. Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatellid accessions. Plant, Cell & Environment, 42(1): 285-294.
26) Xu, Y., Hu, W., Liu, J., Song, S., Hou, X., Jia, C., Li, J., Miao, H., Wang, Z., Tie, W. and B, Xu. 2020. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiology and Biochemistry, 147:66-76.
27) Yepes-Molina, L., Bárzana, G. and M, Carvajal. 2020. Controversial regulation of gene expression and protein transduction of aquaporins under drought and salinity stress. Plants, 9(12): 1662.
28) Zhang, L., Chen, L. and H, Dong. 2019. Plant aquaporins in infection by and immunity against pathogens–a critical review. Frontiers in Plant Science, 10: 632.
29) Zhang, F., Zou, Y.N. and Q.S, Wu. 2018. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae, 229: 132-136.
30) Zou, Y.N., Wu, H.H., Giri, B., Wu, Q.S. and K, Kuča, 2019. Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiology and Biochemistry, 144: 292-299.