تولید انرژی های تجدیدپذیر از پسماندهای ناشی از تولید و فرآوری مواد غذایی
محورهای موضوعی : آب و محیط زیست
1 - استادیار گروه صنایع غذایی، دانشگاه آزاد اسلامی واحد نیشابور، نیشابور، ایران. *(مسوول مکاتبات)
کلید واژه: پسماندهای فرآوری و تولید غذایی, تکنیک های مدرن, تولید انرژی,
چکیده مقاله :
خطوط فرآوری مواد غذایی برای تبدیل مواد خام به فرآورده نهایی، انرژی زیادی مصرف می کنند به طوری که صنعت مواد غذایی یکی از هفت صنعت پر مصرف انرژی محسوب می شود. در این صنعت علاوه بر مصرف بالای انرژی، میزان زیادی ضایعات جامد و مایع نیز تولید می گردد. این ضایعات اساساً شامل مواد آلی بیولوژیک تجزیه پذیر هستند که تخلیه آن ها در محیط، مشکلات محیط زیستی قابل توجهی ایجاد می کند. به طور معمول میزان زیادی از ضایعات مواد غذایی در محل تخلیه زباله، مدفون می شوند ولی ضایعات مایع به رودخانه ها، دریاچه ها یا اقیانوس ریخته شده و یا داخل فاضلاب تخلیه می گردند. اخیراً، قوانین سخت گیرانه محیط زیستی تخلیه ضایعات جامد و مایع ناشی از فرآوری مواد غذایی به محیط زیست را به شدت محدود نموده است و لذا دفع این ضایعات از جمله معضلات بزرگ در صنعت مواد غذایی به حساب می آید ( افزایش قیمت سوخت و هزینه بالای مصرف انرژی در صنعت مواد غذایی، استفاده از پسماندهای حاصل از این صنایع را جهت تولید انرژی ارزان قیمت و پاک به صورت بیودیزل، بیوگاز، روغن های بیو و گازهای سنتزی قوت بخشیده است). این مقاله، مروری بر مهم ترین روش های تبدیل پسماندها و ضایعات غذایی به اشکال مختلف انرژی ( تولید بیودیزل، گازیفیکاسیون، هضم بی هوازی، مایع سازی ترموشیمیایی و تولید بیواتانل) دارد.
Food processing plants consume huge amount of energy for converting raw material to final product so food industry accounts as one of seven high consumption industries. This industry as well as high energy requirement, producing large amount of solid and liquid wastes. These wastes basically contain biodegradable organic compounds that their discharge to environment could cause serious pollution. Generally, large amount of these solid wastes discharge to landfill and liquid ones to rivers and oceans without any treatment. Recently, the strict environmental legislations restrict discharge of wastes to environment, so discharge of these materials is a big challenge for food industry. (Increasing the price of fuel and high cost of energy, encourage the researchers for finding approaches for producing low cost and green energy sources from food wastes). In this article some of the most important ways for converting food wastes to different form of energy such as biodiesel, Gasification, Anaerobic digestion, Thermal liquefaction and ethanol production is discussed.
1- Garot, G., 2014. LutteContre le Gaspilla geAlimentaire: Propositions Pourune Poli t iquePublique. Rapport de Guillaume Garo tDéputé de la Mayenne AncienMinist redé légué à l’Agr oali mentaire.
2- Kranert, M., Hafner, G., Barabosz, J., 2012. Ermittlung der wegge worfe nenLebensmittelmengen und Vorschlägez urVerminderung der WegwerfratebeiLebe nsmitteln in Deutschland [Investigation of food waste amounts and options for their reduction in Germany]. Germany: Institutf ürSiedlungswasserbau, Wassergüte- und Abfallwirtschaft (ISWA), Universität Stutt gart.
3- Monier, V., Mudgal, S., Escalon, V., O’Con nor, C., Gibon, T., Anderson, G., Montoux, H., Reisinger, H., Dolley, P., Ogilvie, S., Morton, G., 2010. Final report-Preparatory study on food waste across EU 27; European Commission [DG ENV-Directorate C]. BI O Intelligence Service, Paris.
4- Hanssen, O.J., Schakenda, V., 2013. Nyttbartmatsvinn i Norge 2011, Analyserav status ogutvikling i matsvinn i Norge 2010-11-Rapport fraForMat-prosjektet. ForMat project report Nr. 1413, Ostfoldforskning.
5- Department for Environment. Food and Rural Affairs., 2015: Food Statistics Pocket book.
6- دیدار، زهره. »تولید انرژی از ضایعات مواد غذایی«. چاپ اول انتشارات دانشگاه آزاد اسلامی واحد نیشابور، 1393، فصل اول.
7- Serrano, A., Siles, J., Chica, A., Martín, M.A., 2013. Agri-food waste valorization through anaerobic co-digestion: fish and strawberry residues. Journal of Cleaner Production, vol. 54, pp. 125–132
8- Markou, G., 2015. Improved anaerobic digestion performance and biogas production from poultry litter after lowering its nitrogen content. Bioresource Technology, vol. 196, pp. 726–730.
9- Rajagopal, R., Massé, D., 2016. Start-up of dry anaerobic digestion system for proces sing solid poultry litter using adapted liquid inoculum. Process Safety and Environmen tal Protection, vol. 102, pp. 495–502.
10- Meng, Y., Jost, C., Mumme, J., Wang, K., 2016. An analysis of single and two stage, mesophilic and thermophilic high rate systems for anaerobic digestion of cornst alk. Chemical Engineering Journal, vol. 288, pp.79 -86.
11- Riggio, V., Comino, E., Rosso, M., 2015. Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp. Renewable En ergy, vol. 83, pp.1043–1049.
12- Calabrò, P., Greco, R., Evangelou, A., Komilis, D., 2015. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. Journal of Environmental Management, vol. 163, pp. 49–52.
13- Suksong, W., Kongjan, P., Prasertsan, P. Imai, T. O-Thong, S., 2016. Optim ization and microbial community analy sis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion . Bior esource Technology, vol. 214, pp. 166–174.
14- Majhi, B.K., Jash, T., 2016. Two-pha se anaerobic digestion of vegetable ma rket waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.Waste Management. DOI:10.1016/j.wasman.2016.09.009.
15- Gomez-Romero, J., Gonzalez-Garcia, A., Chairez, I., Torres, L., García-Peña, E.I., 2014.Selective adaptation of an anaerobic microbial community: Biohy drogen production by co-digestion of cheese whey and vegetables fruit waste. International Journal of Hydrogen Ene rgy, vol. 39(24), pp. 12541–12550
16- Sanjaya, A.P., Cahyanto, M.N. Millati, R., 2016. Mesophilic batch anaerobic digestion from fruit fragments. Rene wable Energy, vol. 98, pp. 135–141.
17- Evcan, E., Tari, C., 2015. Production of bioethanol from apple pomace by using cocultures: Conversion of agroindust rial waste to value added product. Ener gy, vol. 88, pp. 775–782
18- Sarris, D., Matsakas, L., Aggelis, G.K outinas, A.A., Papanikolaou, S., 2014. Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyc es cerevisiae under non-aseptic condit ions. Industrial Crops and Products, vol. 56, pp. 83-93.
19- Akpan, U.J. Alhakim, A., A. Josiah, U. J., 2008. Production of Ethanol Fuel from Organic and Food Wastes. Leona rdo Electronic Journal of Practices and Technologies, vol. 13 , pp. 1-11.
20- Predojević, Z.J., 2008. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel, vol. 87, pp.3522-3528.
21- Giraçol, J., Passarini, K. C., Catureba da Silva Filho, S., AraújoCalarge, F., Tambourgi, E.B., Curvelo Santana, J. C., 2011. Reduction in ecological cost through biofuel production from cooking oils: An ecological solution for the city of Campinas, Brazil. Journal of Cleaner Production, vol. 19, pp. 1324-1329
22- Tashtoush, G., M.I. Al-Widyn, and A. O.Al-Shyoukh., 2003. Combustion per formance and emission of ethyl ester of a waste vegetable oil in a water- cooler furnace. Applied Thermal Engineering, vol. 23, pp. 285-293.
23- Lapirattanakun, A., Charoensuk, J., 2017. Developement of porous media b urner operating on waste vegetable oil. Applied Thermal Engineering, vol.110(5), pp.190–201
24- Giannakopoulou, K., Lukas, M., Vasili ev, A, Brunner,C. Schnitzer, H., 2010. Low pressure catalytic co-conversion of bio genic waste (rapeseed cake) and veget able oil. Bioresource Technology, vol. 101, pp.3209-3219.
25- Caton, P.A., Carr, P.A., Kim, A.A., Bea utyman, M.J., 2010. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study. Energy Conversion and Management, vol.51, pp. 1157-1169.
26- Schutt, B.D., B. Serrano, R.L. Cerro, and M.A. Abraham., 2002. Production of chemicals from cellulose and bioma ss- derived compound through catalyt ic sub- critical water oxidation in a mon olith reactor. Biomass and Bioenergy, vol.22, pp. 365-375.
27- Hammerschmidt, A., Boukis, N., Haue r, E., Galla, U., Dinjus, E., Hitzmann, B .Larsen, T. Nygaard, S.D., 2010. Catal ytic conversion of waste biomass by hydrothermal treatment. Fuel, vol. 90, pp. 555-562.
_||_
1- Garot, G., 2014. LutteContre le Gaspilla geAlimentaire: Propositions Pourune Poli t iquePublique. Rapport de Guillaume Garo tDéputé de la Mayenne AncienMinist redé légué à l’Agr oali mentaire.
2- Kranert, M., Hafner, G., Barabosz, J., 2012. Ermittlung der wegge worfe nenLebensmittelmengen und Vorschlägez urVerminderung der WegwerfratebeiLebe nsmitteln in Deutschland [Investigation of food waste amounts and options for their reduction in Germany]. Germany: Institutf ürSiedlungswasserbau, Wassergüte- und Abfallwirtschaft (ISWA), Universität Stutt gart.
3- Monier, V., Mudgal, S., Escalon, V., O’Con nor, C., Gibon, T., Anderson, G., Montoux, H., Reisinger, H., Dolley, P., Ogilvie, S., Morton, G., 2010. Final report-Preparatory study on food waste across EU 27; European Commission [DG ENV-Directorate C]. BI O Intelligence Service, Paris.
4- Hanssen, O.J., Schakenda, V., 2013. Nyttbartmatsvinn i Norge 2011, Analyserav status ogutvikling i matsvinn i Norge 2010-11-Rapport fraForMat-prosjektet. ForMat project report Nr. 1413, Ostfoldforskning.
5- Department for Environment. Food and Rural Affairs., 2015: Food Statistics Pocket book.
6- دیدار، زهره. »تولید انرژی از ضایعات مواد غذایی«. چاپ اول انتشارات دانشگاه آزاد اسلامی واحد نیشابور، 1393، فصل اول.
7- Serrano, A., Siles, J., Chica, A., Martín, M.A., 2013. Agri-food waste valorization through anaerobic co-digestion: fish and strawberry residues. Journal of Cleaner Production, vol. 54, pp. 125–132
8- Markou, G., 2015. Improved anaerobic digestion performance and biogas production from poultry litter after lowering its nitrogen content. Bioresource Technology, vol. 196, pp. 726–730.
9- Rajagopal, R., Massé, D., 2016. Start-up of dry anaerobic digestion system for proces sing solid poultry litter using adapted liquid inoculum. Process Safety and Environmen tal Protection, vol. 102, pp. 495–502.
10- Meng, Y., Jost, C., Mumme, J., Wang, K., 2016. An analysis of single and two stage, mesophilic and thermophilic high rate systems for anaerobic digestion of cornst alk. Chemical Engineering Journal, vol. 288, pp.79 -86.
11- Riggio, V., Comino, E., Rosso, M., 2015. Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp. Renewable En ergy, vol. 83, pp.1043–1049.
12- Calabrò, P., Greco, R., Evangelou, A., Komilis, D., 2015. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. Journal of Environmental Management, vol. 163, pp. 49–52.
13- Suksong, W., Kongjan, P., Prasertsan, P. Imai, T. O-Thong, S., 2016. Optim ization and microbial community analy sis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion . Bior esource Technology, vol. 214, pp. 166–174.
14- Majhi, B.K., Jash, T., 2016. Two-pha se anaerobic digestion of vegetable ma rket waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.Waste Management. DOI:10.1016/j.wasman.2016.09.009.
15- Gomez-Romero, J., Gonzalez-Garcia, A., Chairez, I., Torres, L., García-Peña, E.I., 2014.Selective adaptation of an anaerobic microbial community: Biohy drogen production by co-digestion of cheese whey and vegetables fruit waste. International Journal of Hydrogen Ene rgy, vol. 39(24), pp. 12541–12550
16- Sanjaya, A.P., Cahyanto, M.N. Millati, R., 2016. Mesophilic batch anaerobic digestion from fruit fragments. Rene wable Energy, vol. 98, pp. 135–141.
17- Evcan, E., Tari, C., 2015. Production of bioethanol from apple pomace by using cocultures: Conversion of agroindust rial waste to value added product. Ener gy, vol. 88, pp. 775–782
18- Sarris, D., Matsakas, L., Aggelis, G.K outinas, A.A., Papanikolaou, S., 2014. Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyc es cerevisiae under non-aseptic condit ions. Industrial Crops and Products, vol. 56, pp. 83-93.
19- Akpan, U.J. Alhakim, A., A. Josiah, U. J., 2008. Production of Ethanol Fuel from Organic and Food Wastes. Leona rdo Electronic Journal of Practices and Technologies, vol. 13 , pp. 1-11.
20- Predojević, Z.J., 2008. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel, vol. 87, pp.3522-3528.
21- Giraçol, J., Passarini, K. C., Catureba da Silva Filho, S., AraújoCalarge, F., Tambourgi, E.B., Curvelo Santana, J. C., 2011. Reduction in ecological cost through biofuel production from cooking oils: An ecological solution for the city of Campinas, Brazil. Journal of Cleaner Production, vol. 19, pp. 1324-1329
22- Tashtoush, G., M.I. Al-Widyn, and A. O.Al-Shyoukh., 2003. Combustion per formance and emission of ethyl ester of a waste vegetable oil in a water- cooler furnace. Applied Thermal Engineering, vol. 23, pp. 285-293.
23- Lapirattanakun, A., Charoensuk, J., 2017. Developement of porous media b urner operating on waste vegetable oil. Applied Thermal Engineering, vol.110(5), pp.190–201
24- Giannakopoulou, K., Lukas, M., Vasili ev, A, Brunner,C. Schnitzer, H., 2010. Low pressure catalytic co-conversion of bio genic waste (rapeseed cake) and veget able oil. Bioresource Technology, vol. 101, pp.3209-3219.
25- Caton, P.A., Carr, P.A., Kim, A.A., Bea utyman, M.J., 2010. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study. Energy Conversion and Management, vol.51, pp. 1157-1169.
26- Schutt, B.D., B. Serrano, R.L. Cerro, and M.A. Abraham., 2002. Production of chemicals from cellulose and bioma ss- derived compound through catalyt ic sub- critical water oxidation in a mon olith reactor. Biomass and Bioenergy, vol.22, pp. 365-375.
27- Hammerschmidt, A., Boukis, N., Haue r, E., Galla, U., Dinjus, E., Hitzmann, B .Larsen, T. Nygaard, S.D., 2010. Catal ytic conversion of waste biomass by hydrothermal treatment. Fuel, vol. 90, pp. 555-562.