An Explicit Numerical Technique for Nonlinear Nonlocal Time-Delay Dynamical Systems via Quadratic Spline Approach
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیH. Panj-mini 1 , B. Parsa Moghaddam 2 , E. Hashemizadeh 3
1 - Department of Mathematics, Lahijan Branch, Islamic Azad university, Lahijanو Iran.
2 - Department of Mathematics, Lahijan Branch, Islamic Azad University,
Lahijan, Iran.
3 - Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
کلید واژه: quadratic spline interpolation, Chaotic attractor, Fractional delay differential equation, Fractional calculus, numerical method, Ikeda model, Hutchinson model,
چکیده مقاله :
Dynamical systems with delay are widespread in nature. The study of time-delay induced changes in the collective behavior of systems of coupled nonlinear oscillators is a subject of great interest, both because of its fundamental importance from the point of view of dynamical systems and because of its practical applications. In this paper, an explicit technique is proposed for numerical solution of nonlocal dynamical systems with time delay. The proposed method is adopted quadratic spline interpolation. Then, the error analysis of the developed method is discussed. It is exploited in the discussion of nonlocal delay Ikeda and Hutchinson models. Finally, the performance of the presented approach is verified by applying the error and convergence study for different values of fractional order parameters.
در این مقاله، روشی صریح برای حل عددی معادلات دیفرانسیل غیرموضعی با تأخیر در زمان ارائه و مورد بررسی قرار می گیرد. در روش ارائه شده، درونیابی اسپلاین مربعی بکار گرفته شده است و خطای روش ارائه شده آنالیز گردیده است. کارایی و اعتبار روش پیشنهادی در مدلهای آیکدا و هاتچینسون غیرموضعی تأخیری با استناد مفاهیم خطا و همگرایی روشهای عددی به ازای مقادیر مختلف پارامترهای مرتبه کسری نمایان شده است.
[1] M. Abdelkawy, A. M. Lopes, M. M. Babatin, Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order, Chaos, Solitons & Fractals 134 (2020) 109721. http://dx.doi.org/10.1016/j.chaos.2020.109721/
[2] S. Banerjee, Mathematical modeling: models, analysis and applications, CRC Press (2014). doi:10.1201/b16526-9.
[3] A. H. Bhrawy, M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynamics 85 (2016) 1815-1823. http://dx.doi.org/10.1007/s11071-016-2797-y/
[4] A. Dabiri, E. A. Butcher, Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods, Applied Mathematical Modelling 56 (2018) 424-448. http://dx.doi.org/10.1016/j.apm.2017.12.012/
[5] A. Dabiri, B. P. Moghaddam, J. A. Tenreiro Machado, Optimal variable-order fractional PID controllers for dynamical systems, Journal of Computational and Applied Mathematics 339 (2018) 40-48. http://dx.doi.org/10.1016/j.cam.2018.02.029/
[6] V. Daftardar-Gejji, Y. Sukale, S. Bhalekar, Solving fractional delay differential equations: A new approach, Fractional alculus and Applied Analysis 18 (2015). http: //dx.doi.org/10.1515/fca-2015-0026/
[7] L. He, S. Banihashemi, H. Jafari, A. Babaei, Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme, Chaos, Solitons & Fractals 149 (2021) 111-118. http://dx.doi.org/10.1016/j.chaos.2021.111018/
[8] H. D. K. Ikeda, O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Physical Review Letters 45 (1980) 709-712. http://dx.doi.org/10. 1103/PhysRevLett.45.709/
[9] K. Ikeda, M. Matsumoto, Study of a highdimensional chaotic attractor, Journal of statistical physics 44 (1986) 955-983. http://dx.doi.org/110.1007/BF01011917/
[10] K. Ikeda, M. Matsumoto, High-dimensional chaotic behavior in systems with timedelayed feedback, Physica D 29 (1987) 223-235. http://dx.doi.org/10.1016/ 0167-2789(87)90058-3/
[11] V. Kiryakova, A Guide to Special Functions in Fractional Calculus, Mathematics 9 (2021) 106. ttp://dx.doi.org/10.3390/
math9010106/
[12] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, M. Salimi, An efficient numerical method for fractional SIR epidemic model of infectious disease by using bernstein wavelets, Mathematics 8 (2020) 558. http://dx.doi.org/10.3390/ math8040558/
[13] Z. Liu, P. Lu, Stability analysis for HIV infection of CD4+ T-cells by a fractional differential time-delay model with cure rate, Advances in Difference Equations 1 (2014) 11-123. http://dx.doi.org/10.1186/1687-1847-2014-298/
[14] R. L. Magin, Fractional calculus in bioengineering, Begell House Redding 2 (2006) 322-345.
[15] T. A. Maraaba, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Science in China Series A: Mathematics 51 (2008) 1775-1786. http://dx.doi.org/10. 1007/s11425-008-0068-1/
[16] B. P. Moghaddam, Z. S. Mostaghim, A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations, Ain Shams Engineering Journal 5 (2014) 585-594. http://dx.doi.org/10.
1016/j.asej.2013.11.007/
[17] B. P. Moghaddam, A. M. Lopes, J. A. Tenreiro Machado, Z. S. Mostaghim, Computational scheme for solving nonlinear ractional stochastic differential equations with delay, Stochastic Analysis and Applications 37 (2019) 893-908. http://dx.doi.org/10. 1080/07362994.2019.1621182/
[18] B. P. Moghaddam, Z. S. Mostaghim, A. Pantelous, J. A. Tenreiro Machado, An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay, Communications in Nonlinear cience and Numerical Simulation 92 (2021) 105-129. http://dx.doi.org/10.1016/j. cnsns.2020.105475/
[19] Z. S. Mostaghim, B. P. Moghaddam, H. S. Haghgozar, Computational technique for simulating variable-order fractional Heston model with application in US stock market, Mathematical Sciences 12 (2018) 277-283. http://dx.doi.org/10. 1007/s40096-018-0267-z/s40314-018-0698-z/
[21] M. D. Ortigueira, J. A. Tenreiro Machado, Fractional calculus applications in signals and systems, Signal Processing 86 (2006) 2503-2504. http://dx.doi.org/10. 1016/j.sigpro.2006.02.001/
[22] H. Panj Mini, B. P. Moghaddam, E. Hashemizadeh, A class of computational approaches for simulating fractional functional differential equations via Dickson polynomials, Chaos, Solitons & Fractals, 152 (2021) 111-124. http://dx.doi.org/10. 1016/j.chaos.2021.111407/
[23] M. A. Z. Raja, Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms, Applied Soft Computing 24 (2014) 806-821. http://dx.doi.org/10.1016/j.asoc.2014.08.055./
[24] U. Saeed, M. ur Rehman, Hermite wavelet method for fractional delay differential equations, Journal of Difference Equations 2014 (2014) 1-8. http://dx.doi.org/10.1155/2014/359093/
[25] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon & Breach Sci. Publishers (1993).
[26] M. Samraiz, Z. Perveen, T. Abdeljawad, S. Iqbal, S. Naheed, On certain fractional calculus operators and applications in mathematical physics, Physica Scripta 95 (2020) 115-121. http://dx.doi.org/10.1088/1402-4896/abbe4e/ 23 (2019) 13-21. http://dx.doi.org/10. 2298/tsci180912326s/
[28] A. Shahnazi-Pour, B. P. Moghaddam, A. Babaei, Numerical simulation of the hurst index of solutions of fractional stochastic dynamical systems driven by fractional brownian motion, Journal of Computational and Applied Mathematics 386 (2021) 113210. http://dx.doi.org/10. 1016/j.cam.2020.113210/
[29] K. Szajek, W. Sumelka, T. Blaszczyk, K. Bekus, On selected aspects of spacefractional continuum mechanics model approximation, International Journal of Mechanical Sciences 167 (2020) 105287. http://dx.doi.org/10.1016/j.
ijmecsci.2019.105287/
[30] S. Yaghoobi, B. P. Moghaddam, K. Ivaz, An effcient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynamics 87 (2016) 815-826. http://dx.doi.org/10. 1007/s11071-016-3079-4/
[31] S. Yaghoobi, B. P. Moghaddam, K. Ivaz, A numerical approach for variableorder fractional unified chaotic systems with timedelay, Computational Methods for Differential Equations 6 (2018) 396-410.
[32] J. Yang, H. Yao, B. Wu, An effcient numerical method for variable order fractional functional differential equation, Applied Mathematics Letters 76 (2018) 221-226. http://dx.doi.org/10.1016/j.aml.2017.08.020/
[33] C. J. Z´u~niga-Aguilar, J. F. G´omez-Aguilar, R. F. Escobar-Jim´enez and H. M. RomeroUgalde, A novel method to solve variableorder fractional delay differential equations based in Lagrange interpolations, Chaos, Solitons & Fractals 126 (2019) 266-282. http://dx.doi.org/10.1016/j. chaos.2019.06.009/