A Multi-Objective Green Supply Chain: Multi-Product Model Considering Uncertainty
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیD. Khodadadian 1 , R. Radfar 2 , A. Tolooei Eshlaghi‎ 3
1 - Department of Management, Doroud Branch, Islamic Azad University, Doroud, Iran.
2 - Management and Economic Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Management and Economic Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.
کلید واژه: Epsilon Constraint, Non-dominated Sorting Genetic Algorithm, Uncertainty, Green supply chain, Multi-objective optimization,
چکیده مقاله :
The purpose of this research is to provide a mathematical model for designing the purchase, production, and distribution in a multi-level and multi-product supply chain network such that the environmental impact and total costs of supply chain is minimized and the customers' satisfaction level is maximized. According to the results, the proposed NSGAII is a reliable method to find efficient Pareto frontiers in a reasonable time.
افزایش آلودگی زیستمحیطی که موجب گرم شدن کره زمین شده است و برای سلامت انسان و تخریب محیطزیست خطرناک است، باعث نگرانی بسیاری از طراحان و مدیران زنجیره تأمینشده است. هدف این پژوهش ارائه یک مدل ریاضی برای طراحی خرید، تولید و توزیع در یک شبکه زنجیره تأمین چند سطحی و چند محصولی است که تأثیرات زیستمحیطی و هزینههای کلی زنجیره تأمین به حداقل برساند و سطح رضایت مشتری به بالاترین سطح برسد. عدم اطمینان تقاضا به خاطر نامشخص بودن سطح تقاضا به نظر مشکلساز است. با توجه به پیچیدگی مدل ریاضی پیشنهادی و سختیهای حل مسئله با روشهای دقیق در اندازه بزرگ، یک NSGA II پیشنهادشده است. برای ارزیابی NSGA II پیشنهادی، 5 نمونه در اندازههای مختلف ساخته میشود و بهوسیله روش محدودیت اپسیلون و NSGAII حل میشود. بر اساس نتایج بهدستآمده، NSGA II پیشنهادی یک روش قابلاطمینان برای یافتن مرزهای پارتویی کارآمد در زمان قابلقبول محسوب میشود.
[1] A. Ben-Tal, A. Nemirovsk, Robust solutions of linear programming problems contaminated with uncertain data, Math. Program 88 (2000) 411-424.
[2] A. Baghalian, S. Rezapour, R. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real- life case, European Journal of Operational Research 227 (2013) 199-215.
[3] S. R. Cardoso, A. P. E. Barbosa-P, S. Relvas, Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty, European Journal of Operational Research 226 (2013) 436-451.
[4] F. Du, GW. Evans, A A bi-objective reverse logistics network analysis for post-sale service, Computers and Operations Research 35 (2008) 26-34.
[5] M. El-Sayed, N. Afia, A. El-Kharbotly, A stochastic model for forward-reverse logistic network design under risk, Computers and Industrial Engineering 58 (2010) 423-31.
[6] M. Fleischmann, H. R. Krikke, R. Dekker, S. D. P. Flapper, A characterization of logistics networks for product recovery, Omega 28 (2000) 653-666.
[7] M. Goedkoop, R. Spriensma, The ecoindicator 99, a damage oriented method for life cycle impact assessment: Methodology report (3rd ed), Amersfoort, Netherlands: Pre Consultants, (2000).
[8] G. Chunxiang, X. Liu, J. Maozhu Jin, L. Zhihan, The research on optimization of auto supply chain network robust model under macro economic fluctuations, Chaos, Solitons and Fractals 11 (2015) 1-10
[9] T. L. Hu, J. B. Sheu, K. Huang, A reverse logistics cost minimization model for the treatment of hazardous wastes, Transportation Research Part E: Logistics and Transportation Review 38 (2002) 457-473.
[10] T. C. Kuo, S. H. Huang, H. C. Zhang, Design for manufacture and design for X: Concepts, applications, and perspectives, Computers and industrial engineering 41 (2001) 241-260.
[11] O. Listes, R. Dekker, A Stochastic approach to a case study for product recovery network design, European Journal of Operational Research 160 (2005) 268-287.
[12] SI. Martinez-Guido, JB. Gonzalez-Campos, RE. Del Rio, JM. Ponce-Ortega, F. NapolesRivera, M. SemaGonzalez, MM. El-Halwagi, A multiobjective optimization approach for the development of a sustainable supply chain of a new fixative in the perfume industry, Acs Sustain Chem. Eng.W 2 (2014) 2380-2390
[13] MT. Melo, S. Nickel, F. Saldanha-daGama, Facility location and supply chain management- a review, European Journal of Operational Research 196 (2009) 401-412.
[14] J. Mills, K. Platts, M. Bourne, Applying resource-based theory: methods, outcomes and utility for managers, International Journal of Operations and Production Management 23 (0032) 148-166.
[15] M. Niknezhad, Green supply chain (with case study), Supply Chain Management Quarterly, number 14 (2008) 13-34.
[16] F. Quariguasi, J. Walther, G. Bloemhof, J. A. E. E. Van Nunen, From closed-loop to sustainable supply chains: the WEEE case, International Journal of Production Research 48 (2010) 4463-4481.
[17] M. Ramezani, M. Bashiri, R. TavakkoliMoghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level, Applied Mathematical Modeling 37 (2013) 328-344.
[18] P. Rao, D. Holt, Do green supply chains lead to competitiveness and economic performance?, International journal of operations and production management 25 (2005) 898-916.
[19] MIG. Salema, AP. Barbosa-Povoa, AQ. Novais, An optimization model for the design of a capacitated multi-product reverse logistic network with uncertainty, European Journal of Operational Research 179 (2007) 1063-77.
[20] G. Taguchi, S. Chowdhury, Y. Wu, Taguchis Quality Engineering Handbook, Wiley Publishing, 2005.
[21] G. Q. Yan, Y. K. Liu, K. Yang, Multiobjective biogeography-based optimization for supply chain network design under uncertainty, Computers and Industrial Engineering 179 (2009) 1063-77.
[22] W. C. Yeh, A hybrid heuristic algorithm for the multistage supply chain network problem, International Journal of Advanced Manufacturing Technology 26 (2005) 675-85.
[23] N. Zarbakhshnia, T. J. Jaghdani, Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study, The International Journal of Advanced Manufacturing Technology 11 (2018) 1-13.
[24] M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri, M. Mohammadi, Sustainable design of a closed-loop location-routinginventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C) 23 (2018) 182-214.
[25] R. Zhao, Y. Liu, N. Zhang, T. Huang, An Optimization Model for Green Supply Chain Management by Using a Big Data Analytic Approach, Journal of Cleaner Production (2016). http://dx.doi.org/10.1016/j.jclepro.2016.03.006/
[26] Q. Zhu, J. Sarkis, Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises, Journal of Operations Management 22 (2004) 265-289.
[27] M. Zohal, H. Soleimani, Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry, Journal of Cleaner Production 133 (2016) 314-337.