Solving Volterra Integral Equations of the Second Kind with Convolution Kernel
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیM. S. Barikbin 1 , A. R. Vahidi 2 , T. ِDamercheli 3
1 - Department of Mathematics, Yadegar-e-Emam Khomeyni (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Mathematics, Yadegar-e-Emam Khomeyni (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.
3 - Department of Mathematics, Yadegar-e-Emam Khomeyni (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.
کلید واژه: Ordinary differential equation, Volterra integral equation, Error analysis, Taylor expansion, Approximate solution,
چکیده مقاله :
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain the approximate solution of the second kind Volterra integral equations with convolution kernel and Maleknejad et al. [K. Maleknejad and T. Damercheli, Improving the accuracy of solutions of the linear second kind volterra integral equations system by using the Taylor expansion method, Indian J. Pure Appl. Math. (2014)] to gain the approximate solutions of systems of second kind Volterra integral equations with the help of Taylor expansion method. The Taylor expansion method transforms the integral equation into a linear ordinary differential equation (ODE) which, in this case, requires specified boundary conditions. Boundary conditions can be determined using the integration technique instead of differentiation technique. This method is more stable than derivative method and can be implemented to obtain an approximate solution of the Volterra integral equation with smooth and weakly singular kernels. An error analysis for the method is provided. A comparison between our obtained results and the previous results is made which shows that the suggested method is accurate enough and more stable.
در این مقاله، یک روش تقریبی برای حل معادلات انتگرال ولترای نوع دوم ارائه میدهیم. این روش بر مبنای روش بسط تیلوری است که مالک نژاد و آقازاده برای بدست آوردن جواب تقریبی معادلات انتگرال ولترای نوع دوم با هسته پیچشی و مالک نژاد و دمرچلی جهت یافتن جواب تقریبی دستگاه معادلات انتگرال ولترای نوع دوم به کار بستهاند. روش بسط تیلور، معادله انتگرال را به یک دستگاه معادلات دیفرانسیل معمولی خطی تبدیل میکند که در این حالت شرایط مرزی مشخص مورد نیاز است. شرایط مرزی میتواند با استفاده از تکنیک انتگرالگیری به جای تکنیک مشتقگیری بدست آید. روش ارائه شده پایدارتر از روش مشتقگیری است و میتواند جهت یافتن جواب تقریبی معادله انتگرال ولترا با هستههای هموار و منفرد ضعیف استفاده شود. تحلیل خطای روش نیز ارائه شده است. مقایسه بین نتایج بدست آمده ما و نتایج قبلی نشان میدهد که روش پیشنهادی دقیقتر و پایدارتر است.
[1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
[2] S. M. Bednov, A new method of solving the integral equations of radiation heat transfer, Journal of engineering physics and thermophysics 51 (1986) 1485-1492.
[3] L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
[4] Andrey E. Kovtanyuk, Alexander Yu. Chebotarev, Nikolai D. Botkin, KarlHeinzHomann, The unique solvability of a complex 3D heat transfer problem, Journal of Mathematical Analysis and Applications 409 (2014) 808-815.
[5] F. A. Hendi, A. M. Albugami, Numerical solution for Fredholm-Volterra integral equation of the second kind by using collocation and Galerkin methods, Journal of King Saud University (Science) 22 (2010) 37-40.
[6] X. F. Li, Approximate solution of linear ordinary dierential equations with variable coecients, Math. Comput. Simulat. 75 (2007) 113-125.
[7] K. Maleknejad, N. Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. 161 (2005) 915-922.
[8] K. Maleknejad, T. Damercheli, Improving the accuracy of solutions of the linear second kind volterra integral equations system by using the Taylor expansion method, Indian J. Pure Appl. Math. 45 (2014) 363-376.
[9] K. Maleknejad, F. Mirzaee, The preconditioned conjugate gradient method for solving convolution-type integral equations, Int. J. Eng. Sci. 14 (2003) 1-11.
[10] K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37 (1999) 1-8.
[11] K. Maleknejad, D. Rostami, Preconditioners for solving stochastic boundary integral equations with weakly singular kernels, Computing 63 (1999) 47-67.
[12] O. D. Kellog, Foundation of Potential Theory, Frederick Unger: New York, 1953.
[13] M. Rahman, Integral Equations and their Applications, WIT Press, 2007.
[14] Adson M. Rocha, Juarez S. Azevedo, Saulo P. Oliveira, Maicon R. Correa, Numerical analysis of a collocation method for functional integral equations, Applied Numerical Mathematics 134 (2018) 31-45.
[15] Y. Ren, B. Zhang, H. Qiao, A simple Taylorseries expansion method for a class of second kind integral equations, J. Comput. Appl. Math. 110 (1999) 15-24.
[16] I. N. Sneddon, Mixed boundary value problems in potential theory, Wiley, New York, 1966.
[17] B. Q. Tang, X. F. Li, A new method for determining the solution of Riccati dierential equations, Appl. Math. Comput. 194 (2007) 431-440.
[18] A. R. Vahidi, T. Damercheli, A Modied ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind, Applied Mathematical Sciences 6 (2012) 1267-1273.
[19] A. M.Wazwaz, Linear and nonlinear integral equations: methods and applications, Higher education, Springer, 2011.
[20] A. M. Wazwaz, A First Course in Integral Equations, World Scientic, Singapore, 1997.