An Experimental Analysis of the Knock Response of Different Stoichiometric Mixtures of Gasoline-Natural Gas to Various Engine Speeds
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیR. Behrad 1 , E. Abdi Aghdam 2 , Hadi Ghaebi 3
1 - Faculty of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 - Faculty of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
3 - Faculty of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
کلید واژه: Natural gas, knock, dual fuel, Gasoline, spark ignition engine,
چکیده مقاله :
Gasoline causes engine knock in higher compression ratios due to having lower spontaneous ignition temperature. Natural Gas (NG) has a higher octane number and is a proper fuel in terms of anti-knock properties; however, using it as the engine fuel results in a decline in the power of the engine and increases the emission of some exhaust gases due to lower burning velocity and gaseous nature.
بنزین به دلیل داشتن دمای اشتعال خودبهخودی پایینتر باعث کوبش موتور در نسبت تراکم بالاتر میشود. گاز طبیعی (NG) عدد اکتان بالاتری دارد و از نظر خواص ضدکوبشی سوخت مناسبی است. با این حال، استفاده از آن به عنوان سوخت موتور منجر به افزایش انتشار برخی از گازهای آلایندهی خروجی و کاهش قدرت موتور می شود که دلیل آن کاهش سرعت سوختن و طبیعت گازی سوخت است. استفاده از مخلوط بنزین و NG با سوخت غالب بنزین میتواند کاهش قدرت موتور را جبران کرده و از وقوع کوبش موتور جلوگیری کند. با در نظر گرفتن این موضوع، در مطالعه حاضر، 4 ترکیب مختلف بنزین و NG شامل 100%، 90%، 80% و 70% بنزین و مابقی NG (به ترتیب GA100، GA90، GA80 و GA70) با استفاده از یک موتور تحقیقاتی SI تک سیلندر با نسبت همارزی 1.0، نسبت تراکم 11، و سرعت موتور 1500، 1800 و 2100 دور در دقیقه به صورت تجربی مورد بررسی قرار گرفت.
[1] J. Alazemi, J. Andrews, Automotive hydrogen fueling stations: an international Review, Renew Sustain Energy Rev 48 (2015) 483-99.
[2] A. Midilli, I. Dincer, Key strategies of hydrogen energy systems for sustainability, Int. J. Hydrog Energy 32 (2007) 511-24.
[3] C. Fotache, T. Kreutz, C. Law C, Ignition of hydrogen-enriched methane by heated air, Combust Flame 110 (1997) 429-40.
[4] E. Pipitone, G. Genchi, Experimental determination of LPG-gasoline mixtures knock resistance, ASME Journal of Engineering for Gas Turbines and Power (2014).
[5] S. Gan S, HK. Ng, KM. Pang, Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel engines, Appl. Energy 88 (2011) 559-67.
[6] A. | Raei | Tabar, | A. | A. | Hamidi, | H. |
Ghadamian, | Experimental | investigation |
of CNG and gasoline fuels combination on a 1.7 L bi-fuel turbocharged engine, Int. J. Energy Environ Eng 8 (2017) 37-45.
[7] M. Bahattin Celik, Experimental determination of suitable ethanolgasoline blend rate at high compression ratio for gasoline engine, Applied Thermal Engineering 28 (2008) 396-404.
[8] A. Taghizadeh-Alisaraei, A. Rezaei-Asl,.The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine, Fuel 185 (2016) 718-733.
[9] O. Obodeh, N. C. Akhere, Experimental study on the effects of kerosene-doped gasoline on gasoline-powered engine performance characteristics, Journal of Petroleum and Gas Engineering 1 (2010) 37-40.
[10] H. Liu, Z. Wang, Y. Long, J. Wang, DualFuel Spark Ignition (DFSI) combustion fuelled with different alcohols and gasoline for fuel efficiency, Fuel 157 (2015) 255-260.
[11] G. tiwari, N. shrivastava, Experimental investigation of ethanol blends with gasoline on SI engine, (2014) 108-114.
[14] S. K. Yekani, E. Abdi Aghdam, F. Sadegh Moghanlou, Experimental Investigation of The Performance Response of A Spark Ignition Engine to Adding Natural Gas to Gasoline in Lean-Burn Condition, International Journal of Industrial Mathematics 11 (2019) 13-21.
[15] H. N. Gupta, Fundamentals of internal combustion engines, PHI Learning Pvt Ltd H (2012).
[16] G. Shu, J. Pan, H. Wei, Analysis of onset and severity of knock in SI engine based on in-cylinder pressure oscillations, Appl Therm Eng 51 (2013) 1297-1306.
[17] E. Ollivier, Contribution a la caracterisation des transferts thermiques dans les moteurs a allumage commande, Application a la detection du cliqueti (2006) PhD thesis ENSTIM of Nantes.
[18] M. Tazerout, B. Leduc, Detection et controle du cliquetis dans les moteurs a gaz de 428 cogeneration, Eur J Mech Eng 44 (2000) 229-233.
[19] C. Rahmouni, G. Brecq, M. Tazerout, O. Le Corre, Knock rating of gaseous fuels in a single cylinder spark ignition engine, Fuel 83 (2004) 327-336.
[20] A. H. Kakaee, M. Momeni Movahed, Evaluation and Development of Methods for Knock Detection Using Cylinder Pressure Data, The Journal of Engine Research 15 (2009).
[21] N. Kawahara, E. Tomita, Y. Sakata, Autoignited kernels during knocking combustion in a spark-ignition engine, Proceedings of the Combustion Institute 31 (2007) 2999-3006.
[22] D. Siano, D. Dagostino, Knock detection in SI engines by using the Discrete Wavelet Transform of the engine block vibrational signals, Energy Procedia 81 (2015) 673-688.
[23] M. Abu-Qudais, Exhaust gas temperature for knock detection and control in spark ignition engine, Energy conversion and management 37 (1996) 1383-1392.
[24] B. Grandin, I. Denbratt, The Effect of Knock on Heat Transfer in SI Engines, SAE Pape 12 (2002) 23-28.
[25] X. Zhen, Y. Zhu, Wang. Y, M. Song, The engine knock analysisAn overview, Applied Energy 92 (2012) 628-636.
[26] F. G. Michael Brunt , R. Christopher, J. Biundo, Gasoline Engine Knock Analysis using Cylinder Pressure Data, SAE TECHNICAL PAPER SERIES 98-106.
[27] D. A. Rothamer, J. H. Jennings, Study of the knocking propensity of 2,5-dimethylfurangasoline and ethanol-gasoline blends, Fuel 13 (2012) 203-212.