On Inclusion Relations Between Generalized Wiener Classes
محورهای موضوعی : مجله بین المللی ریاضیات صنعتی
1 - Department of Mathematics, Abadan Branch, Islamic Azad University, Abadan, Iran.
کلید واژه: Generalized bounded variation, Waterman class, Modulus of variation, Generalized Wiener class,
چکیده مقاله :
We studied inclusion relations between the generalized Wiener classes. In particular, we give a sufficient condition for the inclusion ΛBV^(p_n↑p) ⊆ ΓBV^(q_n↑q) which leads us to new results for such spaces. We also obtain a necessary and sufficient condition for equality of two distinct classes of this type. Furthermore, we extend and unify a number of results in the literature including an important theorem of Avdispahić about Waterman spaces.
در این پژوهش، روابط شمول بین کلاسهای تعمیم یافته وینر بصورت مد را مورد مطالعه قرار دادیم و یک شرط کافی برای رابطه شمول ارائه دادیم. بطوریکه ما را به نتایج جدیدی از دیگر فضاهای تابعی شناخته شده سوق میدهد. همچنین یک شرط لازم و کافی برای تساوی دو کلاس مجزا از این نوع را بدست آوردیم. بعلاوه تعدادی از نتایج این مبحث را که شامل قضیه مهمی از اودیسپاهیچ، در خصوص فضاهای واترمن میباشد را گسترش دادیم.
[1] M. Avdispahic, On the classes BV and V [],Proc. Amer. Math. Soc. 95 (1985) 230-234.
[2] Z. A. Chanturiya, The modulus of variation of a function and its application in the theory of Fourier series, Soviet. Math. Dokl. 15 (1974) 67-71.
[3] U. Goginava, Relations between BV and BV(p(n) " 1) classes of functions, Acta Math. Hungar. 101 (2003) 263-272.
[4] M. M. Goodarzi, M. Hormozi, N. Memic, Relations between Schramm spaces and generalized Wiener classes, J. Math. Anal. Appl. 450 (2017) 829-838.
[5] G. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2nd edn., Cambridge University Press, Cambridge, 1952.
[6] H. Kita, K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (1990) 229-238.
[7] N. Paul Schembari, M. Schramm, V [h] and Riemann-Stieltjes integration, Colloq. Math. 60 (1990) 421-441.
[8] M. Schramm, Functions of -bounded variation and Riemann{Stieltjes integra-tion, Trans. Amer. Math. Soc. 267 (1985) 49-63.
[9] M. Schramm, D. Waterman, Absolute convergence of Fourier series of functions of BV(p) and φBV, Acta Math. Hun-gar. 40 (1982) 273-276.
[10] M. Shiba, On the absolute convergence of Fourier series of functions of class BV(p), Sci. Rep. Fac. Ed. Fukushima Univ. 30 (1980) 7-10.
[11] R. G. Vyas, A note on functions of p(n)--Bounded Variation, J. Indian Math. Soc. (N.S.) 78 (2011) 199-204.
[12] D. Waterman, On convergence of Fourier series of functions of bounded generalized variation, Studia Math. 44 (1972) 107-117.