استفاده از شبکه بازگشتی NAR برای پیش بینی غلظت مونوکسید کربن
محورهای موضوعی :
مدیریت محیط زیست
مهرداد رفیع پور
1
,
علی اصغر آلشیخ
2
,
عباس علیمحمدی
3
,
ابوالقاسم صادقی نیارکی
4
1 - دانشجوی کارشناسی ارشد رشته سیستم اطلاعات مکانی دانشگاه صنعتی خواجه نصیرالدین طوسی (مسوول مکاتبات)
2 - دانشیار رشته سیستم اطلاعات مکانی دانشگاه صنعتی خواجه نصیرالدین طوسی
3 - دانشیار رشته سیستم اطلاعات مکانی دانشگاه صنعتی خواجه نصیرالدین طوسی
4 - استادیار رشته سیستم اطلاعات مکانی دانشگاه صنعتی خواجه نصیرالدین طوسی
تاریخ دریافت : 1392/05/08
تاریخ پذیرش : 1392/10/18
تاریخ انتشار : 1395/07/01
کلید واژه:
آلودگی هوا,
مونوکسیدکربن,
شبکههای عصبی,
مدلسازی,
پیشبینی,
چکیده مقاله :
زمینه و هدف: آلودگی هوا یکی از مشکلات مهم شهرهای بزرگ محسوب میشود. یکی از اهداف مسئولین شهری آگاهی از میزان کیفیت هوا در آینده است؛ برای پیشبینی کیفیت هوا، باید غلظت هریک از آلایندهها مدلسازی شده و با استفاده از مدل ایجاد شده، نسبت به پیشبینی مقادیر هریک از آلایندهها اقدام شود. با توجه به اینکه مونوکسید کربن یکی از آلایندههای مهم هوا است، و تاثیرات زیانباری بر سلامت انسان دارد. روش بررسی: در این مقاله به مدلسازی و پیشبینی 24 ساعته غلظت مونوکسید کربن با استفاده از شبکههای عصبی بازگشتی NAR و مدل آماری ARMA پرداخته شده و سپس نتایج این دو روش با یکدیگر مقایسه شده است. برای این منظور از دادههای سال 2009 از 29 نوامبر تا 31 دسامبر، مربوط به غلظت آلاینده مونوکسیدکربن اندازهگیری شده در ایستگاه آزادی از ایستگاههای پایش کیفیت هوا متعلق به سازمان محیط زیست استان تهران استفاده شده است. یافتهها: نتایج مدلسازی نشان میدهد که شبکه عصبی NAR دارای دقت بهتری نسبت به روش ARMA برای پیشبینی و مدلسازی غلظت مونوکسید کربن است. شبکه عصبی NAR با MSE کمتر از 6/1 دقت مناسبی در پیشبینی غلظت آلاینده مونوکسید کربن داشت. همچنین همبستگی بین مقادیر پیشبینی شده و مقادیر واقعی برای شبکه عصبی NAR، 84 درصد میباشد. در حالی که مدل ARMA دارای MSE برابر 46/5 و ضریب همبستگی 72 درصد می باشد. نتیجهگیری: میتوان نتایج پیشبینی را جهت آگاهسازی عمومی در اینترنت و شبکههای جمعی منتشر کرد. همچنین نتایج مدلسازی و پیشبینی میتواند برای مدیریت بهتر آلودگی هوا توسط مدیران مورد استفاده قرار گیرد. نتایج این تحقیق نشان میدهد که شبکه عصبی NAR قابلیت بسیار بالایی در پیشبینی سری زمانی غاظت مونوکسیدکربن دارد.
چکیده انگلیسی:
Background and Objective: Air pollution is one of the most important problems in big cities. One of the goals of urban managers is their awareness on air pollution in the future. For prediction of air quality, air pollutant must be modeled first. Carbon monoxide is one of the most toxic air pollutants that has harmful effect on human health. Method: In this paper, modeling carbon monoxide concentration and 24-h prediction by ARMA and NAR neural network have been studied. Then, the results of the two methods are compared. For this purpose, data is collected on 29 November until 31 December 2009 in Azadi air quality monitoring station: belonged to Tehran department of environment. Findings: The results of the two methods showed that, NAR is more accurate than ARMA for modeling and prediction of carbon monoxide. NAR neural network had MSE=1.6 and a correlation coefficient of 0.84 while ARMA had MSE=5.46 and correlation coefficient=0.72 for 24 hours prediction. Discussion and Conclusion: Finally, the predicted values can be used and published in internet for public awareness. Also urban managers can use the results of modeling and prediction for a better management. Result of this paper showed NAR neural network has sufficient ability to model and predict time series of monoxide carbon
منابع و مأخذ:
ندافی کح, م.؛حسنوند, م.ص.؛نقیزاده, ع. آلودگی هوا منشأ وکنترل آن. تهران: انتشارات نص; 1390.
خزایی ا. اکتشاف دانش به روش فازی-عصبی در محیط GIS (مطالعه موردی آلودگی هوا). تهران: دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی،رشته نقشه برداری سیستم اطلاعات مکانی 1390.
Brunelli U, Piazza V, Pignato L, Sorbello F, Vitabile S. Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster. Building and Environment. 2008; 43(3):304-14.
Singh KP, Gupta S, Kumar A, Shukla SP. Linear and nonlinear modeling approaches for urban air quality prediction. The Science of the total environment. 2012; 426:244-55.
Fernando HJ, Mammarella MC, Grandoni G, Fedele P, Di Marco R, Dimitrova R, et al. Forecasting PM10 in metropolitan areas: Efficacy of neural networks. Environmental pollution. 2012; 163:62-7.
هاتفیافشار،ا. پیش بینی آلودگی هوا با استفاده از داده کاوی مکانی. تهران: دانشگاه تهران . دانشکده فنی . گروه نقشه برداری . رشته نقشه برداری سیستم اطلاعات مکانی; 1387.
هاشمی ف. بررسی و ارزیابی الگوریتمهای مونت کارلو و شبکه عصبی برای پیشبینی الودگی هوا در محیط یک سیستم اطلاعات مکانی زمانمند. تهران: دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی،رشته نقشه برداری سیستم اطلاعات مکانی; 1390.
Diaconescu E. The use of NARX neural networks to predict chaotic time series. WSEAS Trans Comp Res. 2008; 3(3):182-91.
منهاج م.ب. مبانی شبکههای عصبی. تهران: مرکز نشر دانشگاه امیرکبیر; 1389.
Pisoni E, Farina M, Pagani G, Piroddi L. Environmental Over-Threshold Event Forecasting using NARX Models. Preprints of the 18th IFAC World Congress; Milan 2011.
Kurt A, Gulbagci B, Karaca F, Alagha O. An online air pollution forecasting system using neural networks. Environment international. 2008; 34(5):592-8.
Karatzas KD, Kaltsatos S. Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory. 2007; 15(10):1310-9.
Niska H, Hiltunen T, Karppinen A, Ruuskanen J, Kolehmainen M. Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence. 2004;17(2):159-67.
Alalawi S, Abdulwahab S, Bakheit C. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environmental Modelling & Software. 2008; 23(4):396-403.
Sousa S, Martins F, Alvimferraz M, Pereira M. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software. 2007; 22(1):97-103.
Petelin D, Grancharova A, Kocijan J. Evolving Gaussian process models for prediction of ozone concentration in the air. Simulation Modelling Practice and Theory 80-33: 68; 2013.
Schlink U, Herbarth O, Richter M, Dorling S, Nunnari G, Cawley G, et al. Statistical models to assess the health effects and to forecast ground-level ozone. Environmental Modelling & Software. 2006; 21(4):547-58.
Lawson AR, Ghosh B, Broderick B. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models. Atmospheric Environment. 2011; 45(27):4719-27.
Díaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, et al. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment. 2008; 42(35):8331-40.
Pisoni E, Farina M, Carnevale C, Piroddi L. Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence. 2009; 22(4-5):593-602.
Khedairia S, Khadir MT. Impact of clustered meteorological parameters on air pollutants concentrations in the region of Annaba, Algeria. Atmospheric Research. 2012; 113:89-101.
فتحتبارفیروزجایی س. ارزیابی روشهای مختلف درونیابی در پهنهبندی آلایندهها در شهر تهران. تهران: دانشگاه آزاد اسلامی واحد علوم تحقیقات، رشته سنجش از دور و سیستم اطلاعات مکانی; 1390.
Kitagawa G. Introduction to Time Series Modeling: Taylor & Francis; 2010.
Barrero MA, Grimalt JO,