کاربرد شبکه عصبی GMDH و الگوریتم ژنتیک در مدل سازی درصد متان موجود در گاز مراکز دفن زباله
محورهای موضوعی : مدیریت محیط زیستمحمد جواد ذوقی 1 , محمد غمگسار 2 , مسلم گنجی 3 , سعید فلاحی 4
1 - استادیار گروه مهندسی عمران، دانشگاه بیرجند (مسوول مکاتبات)
2 - عضو هیات علمی گروه مهندسی محیط زیست، پژوهش کده محیط زیست جهاد دانشگاهی
3 - دانشجوی دکتری ریاضی کاربردی، دانشگاه شهید چمران اهواز، اهواز، ایران
4 - دانشجوی دکتری ریاضی کاربردی، دانشگاه گیلان
کلید واژه: شبکه عصبی GMDH, الگوریتم ژنتیک, فاضلاب مراکز دفن زباله, گاز مراکز دفن زباله, درصد متان,
چکیده مقاله :
زمینه و هدف : در این مطالعه از شبکه عصبی GMDH بر اساس الگوریتم ژنتیک جهت پیش بینی درصد متان موجود در گاز دفن گاه زباله در مقیاس آزمایشگاهی، استفاده شده است. جهت تخمین درصد متان موجود در گاز مرکز دفن به وسیله شبکه عصبی GMDH، از مشخصات فاضلاب به عنوان داده های ورودی و از درصد متان موجود در بیوگاز به عنوان داده خروجی استفاده شده است. پارامترهای ورودی جهت پیش بینی میزان متان موجود در بیوگاز شامل دما، رطوبت، pH، COD و آمونیوم می باشد. روش بررسی: راکتورهای شبیه ساز مرکز دفن زباله که در این مطالعه از آن ها استفاده شده، در دو سیستم متفاوت عمل می کنند. سیستم یک(C1)، فقط شامل راکتور حاوی زباله تازه است، در این سیستم فاضلاب پس از تولید بر روی زباله تازه بازگردانده می شود. سیستم دو(C2)، شامل راکتور حاوی زباله تازه و راکتوری حاوی زباله خوب تجزیه شده است. در این سیستم، فاضلاب پس از خروج از زباله تازه، برروی راکتور حاوی زباله خوب تجزیه شده تخلیه و سپس بر روی زباله تازه بازگردانده می شود. در دو سیستم، پارامترهای کیفی فاضلاب و درصد متان موجود در بیوگاز راکتورها به مدت 132 روز پایش شده است. یافته ها: نتایج مطالعه نشان می دهد، شبکه عصبی GMDH در پیش بینی درصد متان موجود در بیوگاز دارای عملکرد بالایی می باشد به طوری که ضریب همبستگی در داده های آموزش و تست به ترتیب برابر 98/0 و 99/0 برآورد می گردد. بحث و نتیجه گیری: با توجه به کارائی بالای شبکه عصبی GMDH در پیش بینی درصد متان موجود در بیوگاز، می توان از این مدل جهت طراحی بهینه سیستم های جمع آوری و تصیه گاز مراکز دفن زباله، و همچنین برای حصول اطمینان از نتایج پایش و کاهش هزینه پایش استفاده کرد.
Background and Objective: In this study, The Group Method of Data Handling (GMDH) type neural networks whit genetic algorithm was applied to estimate the methane fraction in landfill gas originating from Lab-scale landfill bioreactors. In this study, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used input parameters such as pH, Chemical Oxygen Demand, NH4+-N and waste temperature. Method: To this Purpose, two different systems were applied for neural network’s data obtained. In system I (C1), the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled every two days. In System II (C2), the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor. leachate and landfill gas components were monitored for 132 days. Findings: The study results indicate that GMDH is able to predict the methane fraction in landfill gas. The correlation between the observed and predicted values for the training data is 0.98 and for the testing data, it is 0.99. Discussion and Conclusion: The proposed method can significantly predict the methane fraction in landfill gas originating and, consequently, GMDH can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity) recovery and monitoring system.
- Daniel, D.E., 1993. Geotechnical Practices for Waste Disposal. Chapman and Hall, USA.
- Lober, J.D., 1996. Municipal solid waste policy and public participation in household source reduction. Waste management and research. 14: 125-143.
- Speece, R.E., 1996. Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville, Tennessee, USA.
- Young, A., 1989. Mathematical modeling of landfill degradation. Journal of Environmental Engineering, ASCE 115 (6), 1073-1087.
- Peer, R.L., Darcy, D.L., Campbell, D.L., 1992. Development of an Empirical Model of Methane Emissions from Landfills. EPA/600/SR-92/037.
- Gurijala, K.R., Sa, P., Robinson, J.A., 1997. Statistical modeling of methane production from landfill samples. Applied and Environmental Microbiology 63 (10), 3797-3803.
- Bestamin, O., Ahmet, D., 2007. Neural network prediction model for the methane fraction inbiogas from field-scale landfill bioreactors. Environmental Modelling & Software 22: 815-822.
- Rodriguez, M.J., Se´rodes, J.B., 1999. Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environmental Modelling & Software 14 (1), 93-102.
- Onkal-Engin, G., Demir, I., Engin, S.N., 2005. Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software 20 (7), 843-850.
- Kolehmainen, M., Martikainen, H., Ruuskanen, J., 2001. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 35: 815-825.
- Holubar, P., Zani, L., Hager, M., Fro¨schl, W., Radak, Z., Braun, R., 2002. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Research 36, 2582-2588.
- Strik, D.P.B.T.B., Domnanovich, A.M., Zani, L., Braun, R., Holubar, P., 2005. Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox. Environmental Modelling & Software 20, 803-810.
- Ivakhneko. A. G., 1971. polynomial theory of complex systems. IEE Trans. On systems. Man and Cybermetics SMC. 1, 364-378.
- Madala. H. R, Ivakhenko. A.G., 1994. Inductive Learning Algorithms for complex systems Modeling. CRC Press Inc. Boca Raton.
- Reinhart, D.R., Grosh, C.J., 1998. Analysis of Florida MSW Landfill Leachate Quality, Florida Center for Solid and HazardousWaste Management. Final Report #97-3.
- Reinhart, D.R., Al-Yousfi, B., 1996. The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Management and Research. 14: 337-346.
- Pohland, F.G., Al-Yousfi, B., 1994. Design and operation of landfills for optimum stabilization and biogas production. Water Science and Technology 30 (12), 117-124.
- Perera, L.A.K., Achari, G., Hettiaratchi, J.P.A., 2002. Determination of source strength of landfill gas: a numerical modeling approach. Journal of Environmental Engineering, ASCE 128 (5), 461-471.
- Shou-liang, H., Bei-dou, X., 2008. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic–aerobic process. Bioresource Technology 99: 6456–6463.
- Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR., 2003. Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc I MECH E Part B J Eng Manufact 217:779–90.
- Atashkari K, Nariman-Zadeh N, Gölcü M, Khalkhali A, Jamali A., 2007. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energ Convers Manage 48:1029–41.
- Gurijala, K.R., Suflita, J.M., 1993. Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science & Technology 27, 1176-1181.
- Reinhart, D. R., and Townsend, T. G., 1997. Landfill Bioreactor Design & Operation. Lewis Publishers: New York.
- Benson, C. H., Barlaz, M. A., Lane, D. T., and Rawe, J. M., 2007. Practice review of five bioreactor/recirculation landfills. Waste Management, 27: 13-29.
- Kettunen, R.H., Hoilijoki, T.H., Rintala, J.A., 1996. Anaerobic and sequential anaerobic–aerobic treatments of municipal landfill leachate at low temperatures. Bioresour Technol. 58: 31-40.
_||_