تحلیل زیستی و رگرسیونی آبشویی علف¬کش 2,4-D
محورهای موضوعی : کشاورزی و محیط زیستمحمد حسین جمشیدی 1 , حمید صالحیان 2 , اسماعیل بابانژاد 3 , محمد رضوانی 4
1 - دانشجوی دکتری علوم علف¬های هرز، گروه زراعت و اصلاح نباتات، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
2 - دانشیار گروه زراعت و اصلاح نباتات، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران * (مسوول مکاتبات)
3 - استادیار گروه بهداشت، دانشکده بهداشت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی مازندران.
4 - دانشیار گروه زراعت و اصلاح نباتات، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
کلید واژه: آبشویی علف¬کش, تجزیه همبستگی کانونیک, زیست سنجی.,
چکیده مقاله :
زمینه و هدف: آبشویی علفکشها نه تنها کارآیی آنها را کاهش میدهد بلکه باعث افزایش آلودگی خاك و آبهای زیر زمینی ميشوند. 2,4-D علفکشی است که قابلیت آلایندگی خاك و آبهای عمقی را دارد. اين آزمايش با هدف بررسی تاثیر ماده آلی و بافت خاک بر نفوذپذیری علفکش 2, 4-D از طریق زیستی و تجزیه همبستگی کانونیک انجام شد.
روش بررسی: در این آزمایش در سال 1398 به منظور تحلیل و تکیه بر تاثیر ماده آلی و بافت خاک بر آبشویی علفکش 2,4-D از دو روش زیستسنجی و تجزیه همبستگی کانونیک (Canonical Correlation Analysis) استفاده شد. فاکتورهای آزمایشی عبارت بودند از میزان ماده آلی خاک (شاهد، 5/2 و 5 درصد وزنی کود دامی)، بافت خاک (شاهد، متوسط و شنی) و دز علفکش (5/1 و 3 لیتر در هکتار از علفکش). پس از تهیه تیمارها از لولههای تو خالی (PVC) برای نگهداری خاک استفاده و علفکش روی ستون خاک همراه با آب مقطر تزریق شد. پس از سه روز برشهای دو سانتیمتری از ستون خاک در معرض آزمون زیستسنجی قرار گرفتند.
یافتهها: با استناد به صفت وزن تر گیاهچه خیار (گیاه محک) در تیمار بیشترین مقدار کود دامی حد آبشویی تا عمق شش سانتیمتری برآورد شد. در حالی که این افق برای خاک شاهد 10 سانتیمتر محاسبه گردید. در خاک شنی نیز کاهش وزن تر تا عمق 12 سانتیمتری اندازهگیری شد. به عبارت دیگر همراه با کاهش ماده آلی و افزایش تخلخل خاک نفوذ علفکش 2,4-D تا شش سانتیمتر افزایش یافت.
نتیجهگیری: کود دامی و خاک سنگین سبب عدم تحرک 2,4-D شده و کاربرد آن در باغات جوان با ریشه سطحی، مناسب نیست.
Background & Objective: Leaching of herbicides not only reduces their efficiency, but also increases soil and groundwater pollution. 2,4-D is a herbicide that can pollute soil and deep water. This experiment was conducted with the aim of investigating the effect of organic matter and soil texture on the permeability of 2,4-D herbicide through biological and canonical correlation analysis.
Material and Methodology: In this experiment in 2018 in order to analyze and rely on organic matter and soil texture effects on the 2,4-D leaching, Bioassay and Canonical Correlation Analysis techniques were used. Experimental factors were soil organic matter (control, 2.5 and 5 weight percent of sheep short dung), soil texture (control, silty loam and loam soil) and herbicide dose (1.5 and 3 L ha-1). After supplying treatments, polyvinyl chloride pipes benefited for soil retention then herbicide inoculated with distilled water on the soil column. After three days all each 2-cm rings of column soil were exposed to bioassay test.
Findings: According to seedling wet weight of cucumber (test plant) in the most amount of dung fertilizer treatment, herbicide leaching front estimated till six cm depth. Whereas this horizon measured 10 cm for the control soil. In sandy soil too, wet weight loss was measured until 12 cm soil depth. In other words, with decreasing organic matter and increasing soil porosity, 2,4-D penetration raised as 6 cm depth.
Discussion and conclusion: Dung fertilizer and heavy soil lead to herbicide immobility and 2,4-D application is not suitable in the young gardens with shallow roots.
Background & Objective: Leaching of herbicides not only reduces their efficiency, but also increases soil and groundwater pollution. 2,4-D is a herbicide that can pollute soil and deep water. This experiment was conducted with the aim of investigating the effect of organic matter and soil texture on the permeability of 2,4-D herbicide through biological and canonical correlation analysis.
Material and Methodology: In this experiment in 2018 in order to analyze and rely on organic matter and soil texture effects on the 2,4-D leaching, Bioassay and Canonical Correlation Analysis techniques were used. Experimental factors were soil organic matter (control, 2.5 and 5 weight percent of sheep short dung), soil texture (control, silty loam and loam soil) and herbicide dose (1.5 and 3 L ha-1). After supplying treatments, polyvinyl chloride pipes benefited for soil retention then herbicide inoculated with distilled water on the soil column. After three days all each 2-cm rings of column soil were exposed to bioassay test.
Findings: According to seedling wet weight of cucumber (test plant) in the most amount of dung fertilizer treatment, herbicide leaching front estimated till six cm depth. Whereas this horizon measured 10 cm for the control soil. In sandy soil too, wet weight loss was measured until 12 cm soil depth. In other words, with decreasing organic matter and increasing soil porosity, 2,4-D penetration raised as 6 cm depth.
Discussion and conclusion: Dung fertilizer and heavy soil lead to herbicide immobility and 2,4-D application is not suitable in the young gardens with shallow roots.
Background & Objective: Leaching of herbicides not only reduces their efficiency, but also increases soil and groundwater pollution. 2,4-D is a herbicide that can pollute soil and deep water. This experiment was conducted with the aim of investigating the effect of organic matter and soil texture on the permeability of 2,4-D herbicide through biological and canonical correlation analysis.
Material and Methodology: In this experiment in 2018 in order to analyze and rely on organic matter and soil texture effects on the 2,4-D leaching, Bioassay and Canonical Correlation Analysis techniques were used. Experimental factors were soil organic matter (control, 2.5 and 5 weight percent of sheep short dung), soil texture (control, silty loam and loam soil) and herbicide dose (1.5 and 3 L ha-1). After supplying treatments, polyvinyl chloride pipes benefited for soil retention then herbicide inoculated with distilled water on the soil column. After three days all each 2-cm rings of column soil were exposed to bioassay test.
Findings: According to seedling wet weight of cucumber (test plant) in the most amount of dung fertilizer treatment, herbicide leaching front estimated till six cm depth. Whereas this horizon measured 10 cm for the control soil. In sandy soil too, wet weight loss was measured until 12 cm soil depth. In other words, with decreasing organic matter and increasing soil porosity, 2,4-D penetration raised as 6 cm depth.
Discussion and conclusion: Dung fertilizer and heavy soil lead to herbicide immobility and 2,4-D application is not suitable in the young gardens with shallow roots.
Background & Objective: Leaching of herbicides not only reduces their efficiency, but also increases soil and groundwater pollution. 2,4-D is a herbicide that can pollute soil and deep water. This experiment was conducted with the aim of investigating the effect of organic matter and soil texture on the permeability of 2,4-D herbicide through biological and canonical correlation analysis.
Material and Methodology: In this experiment in 2018 in order to analyze and rely on organic matter and soil texture effects on the 2,4-D leaching, Bioassay and Canonical Correlation Analysis techniques were used. Experimental factors were soil organic matter (control, 2.5 and 5 weight percent of sheep short dung), soil texture (control, silty loam and loam soil) and herbicide dose (1.5 and 3 L ha-1). After supplying treatments, polyvinyl chloride pipes benefited for soil retention then herbicide inoculated with distilled water on the soil column. After three days all each 2-cm rings of column soil were exposed to bioassay test.
Findings: According to seedling wet weight of cucumber (test plant) in the most amount of dung fertilizer treatment, herbicide leaching front estimated till six cm depth. Whereas this horizon measured 10 cm for the control soil. In sandy soil too, wet weight loss was measured until 12 cm soil depth. In other words, with decreasing organic matter and increasing soil porosity, 2,4-D penetration raised as 6 cm depth.
Discussion and conclusion: Dung fertilizer and heavy soil lead to herbicide immobility and 2,4-D application is not suitable in the young gardens with shallow roots.
1. Lin C.H, Lerch R.N., Garrett H.E., Johnson W.G., Jordan D., and George M.F. 2003. The effect of five forage species on transport and transformation of atrazine and isoxaflutole (Balance) in lysimeter leachate. Journal Environmental Quality, 32:1992-2000.
2. Konda L.N., and Pasztor Z. 2001. Environmental distribution of acetochlor, atrazine, chlopyrifos and propischlor under field conditions. Journal Agricultural Food Chemistry, 49: 3859-3863.
3. Theng B.K.G., Kookana R.S., and Rahman A. 2000. Environmental concerns of pesticides in soil and groundwater and management strategies in Oceania. In P. M. Huang., and and I.K. Iskandar. Soil and Groundwater Pollution and Remediation. CRC Press. Boca Raton. Florida.
4. Buelk S., Vendy W.B., Colin D.B., Mattew M., and Allan W. 2005. Evaluation of simplifying assumption on pesticide degradation in soil. Journal Environmental Quality, 34:1933-1943.
5. Anping D., Frank M., and Kolar V. 1999. Determination of atrazine in soil samples by ELISA using polyclonal and monoclonal antibodies. Food Agricultural Immunology, 11:135-144.
6. Muller K., Magesan G.N., and Bolan N.S. 2007. A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture Ecosystem and Environment,120:93- 116.
7. Tao Q. H., and Tang H.X. 2004. Effect of type of compounds on the adsorption of atrazine by natural sediment. Chemosphere, 56:31-38.
8. Aspelin A.L. 1994. Pesticides industry sales and wage: 1992 and 1993 market estimate. U. S. EPA. Office of prevention. Pesticides and Toxic Substances. Office of Pesticides Programs. Biological and Economic Analysis Division. Washington, D. C. pp: 92-101.
9. Kaskinen W.C., and Harper S.S.1990. The retention process and mechanisms. p. 51-57. In H.H. Cheng(ed.) Pesticides in the soil environment. Soil Science Society America.
10. Potter T.L., and Busch D.D. 2007. Summer cover crops reduced atrazine leaching to shallow groundwater in southern Florida. Journal Environmental Quality, 36:1301-1309.
11. Muhamad H., Ismail B.S., Sameni M., and Mat N.2011. Adsorption study of 14C-paraquat in two Malaysian agricultural soils. Environmental Monitoring and Assessment,176:43-50.
12. Karasali H., Pavlidis G., Marousopoulou A., and Ambrus A. 2017. Occurrence and distribution of trifluralin, ethalfluralin, and pendimethalin in soils used forlong-term intensive cotton cultivation in central Greece. Journal of Environmental Science and Health, Part B.0:1-10.
13. Salazar-Ledesma M., Prado B., Zamora O., and Siebe C.2018. Mobility of atrazine in soils of a wastewater irrigated maize field. Agriculture, Ecosystems and Environment, 255:73-83.
14. zbay B., Akyol N. H., Akyol G., and Ozbay I.2018. Sorption and desorption behaviors of 2,4‐D and glyphosate in calcareous soil from Antalya, Turkey. Water and Environment Journal, 1:141-148.
15. Vanwyk L.L., and Reinhardt C.F. 2001. A Bioassay technique detects Imazethapyr leaching and liming-dependent activity. Weed Technology,15:1-6.
16. MacDonald K. B., Mckercher R. B., and Mover J. R. 1976. Picloram displacement in soil. Soil Science,121:94-102.
17. Manly B. F. J. 2010. Multivariate Statistical Methods A Primer. Translated by Moghadam M., Mohammadi S. A., and Aghaee Sarbarzeh M. Tabriz Pariver Publication. 276 pp.
18. Salehian H., and Soltani S.2009.Identification weed distribution using soil properties. Agricultural Science, 3:111-120.
19. Lashkari A., Rastgoo M., Minbashi M., Ghanbari M., and Rashed Mohassel M H. 2017. The associations of soil properties and climatic factors with weed distribution in Turfgrasses. Iranian Journal of Weed Science, 2:147-156.
20. Izadi E., Rashed Mohassel M.H., Zand E., Nassiri mohalati M., and Lakzian A.2008. Evaluation of Soil texture and organic matter on atrazine degradation. Environmental Science, 4:53-64.
21. Tollnar E.W., Hagrove E.L., and Langdal G.W.1984. Influence of conventional and no-tillage practices on soil physical properties in the southern Piedmount. Journal Soil and Water Conservation, 38:73-76.
22. USDA.1982. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigations. Report Number 1.
23. Zand E., Mousavi S.K., and Heidari A. 2014. Herbicides and their Applications. 2nd Edition by Fundamental Changes. Ferdowsi University Press. 547 pp.
24. Stolpe N.B., and Kuzila M.S.2002. Relative mobility of Atrazine, 2,4-D and Dicamba in volcanic soils of south-central Chile. Soil Science, 5:338-345.
25. Soltani A.2007.Application of SAS in Statistical Analysis. Mashhad Jahad Daneshgahi Press.182. p.
26. Futch S.H., and Singh M.1999. Herbicide mobility using soil leaching columns. Bulletin Environmental and Contaminent Toxicology, 62:520-529.
27. Gerstl Z., and Yaron B. 1983a. Behavior of bromacil and napropamide in soils: I. Adsorption and degradation after application from a point source. Soil Science Society American Journal, 47:474-478.
28. Gerstl Z., and Yaron B. 1983b. Behavior of bromacil and napropamide in soils: II.Distribution after application from a point source. Soil Science Society American Journal, 47:478-483.
29. Si Y., Zhang J., Wang S., Zhang L., and Zhou D. 2006. Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma, 130: 66-76.
30. Helling C.S.1971. Pesticide mobility in soils III. Influence of soil properties. Soil Science Society American Proceeding. 35: 743-748.
31. Berglof T., Van Dung T., Kylin H., and Nilsson I. 2002. Carbendazim sorption desorption in Vietnamese soils. Chemosphere, 48:267-273.
32. Liu Y., Xu Z., Wu X., Gui W., and Zhu G. 2010. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. Journal Hazard Material,178: 462–468.
33. Parkpian P., Anurakpongsatorn P., Pakkong P., and Patrick J.W.H. 1998. Adsorption, desorption and degradation of α-endosulfan in tropical soils of Thailand. Journal Environmental Science Health Bulletin, 33:211-233.
34. Wang P., and Keller A.A. 2009. Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions. Water Research,43:1448-1456.
35. Bansal O.P. 2010. The Effects of composts on adsorption-desorption of three carbamate pesticides in different soils of Aligarh district. Journal Applied Science Environment Management, 14:155-158.
36. Jones D.L., Edwards-Jones G., Murphy D.V. 2011. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology Biochemistry, 43:804-813.
37. Ashraf Jiandani M. 2015. Soil adsorption of pesticides used on vegetables in southern Sindh. Thesis of Degree of Doctor of Philosophy in Analytical Chemistry. University of Sindh Jamshoro, Sindh-Pakistan.
38. Cox L., Koskinen W.C., Celis R., Yen P.Y., Hermosin M.C., and Cornejo J. 1998. Sorption of imidacloprid on soil clay and organic components. Soil Science Society of American Journal, 62: 911-915.
39. Cox L, Cecchi A, Celis R, Hermosin M.C, Koskinen W.C., and Cornejo J. 2001. Effect of exogenous carbon on movement of simazine and 2,4-D in soils. Soil Science Society American Journal, 65:1688-1695.
40. Kulluru P.P., Das B.S., and Panda R.K. 2010. Evaluation of Sorption and Leaching Potential of Malathion and Atrazine in Agricultural Soils of India. International Journal Environmental Research,1:75-90.
41. Novak S.M., Portal J.M., and Schiavon M. 2001a. Influence of soil aggregate size on Atrazine and trifluralin leaching. Bulletin Environmental Contamination Toxicology, 66: 514-521.
42. Haberhauer G., Temmel B., and Gerzabek M.H. 2002. Influence of dissolved humic substances on the leaching of MCPA in a soil column experiment. Chemosphere, 46:495-499.
43. Socias-Viciana M.M., Fernandez-Perez M., Villafranca-Sanchez M., Gonzales-Pradas E., Flores-Cespedes F. 1999. Sorption and leaching of atrazine and MCPA in natural and peat-amended calcareous soils from Spain. Journal Agricultural Food Chemistry, 47:1236-1241.
44. Singh M., Castle W.M., Achhireddy N. 1985. Movement of bromacil and norflurazon in a sandy soil in Florida. Bulletin Environmental and Contaminent Toxicology, 35:279-284.
45. Morillo E., Undabeytia T., Cabrera A., Villaaverde J., and Maqueda C. 2004. Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide Norflurazon. Journal Agricultural Food Chemistry, 52: 884-890.
46. Hance R.J.1989. Adsorption and bioavailability. p. 1-19. In I.R. Grover (ed.) Environmental Chemistry of Herbicides. CRC Press, Boca Raton, FL.
47. Oliveira R.S., Koskinen W.C., and Ferreira F.A. 2000. Sorption and leaching potential of Herbicides on Brazilian soils. Weed Research, 41: 97-110.
48. Mallawatantri A.P, McConkey B.G., and Mulla D.J.1996. Characterization of pesticide sorption and degradation in macropore linings and soil horizons of Thatuna silt loam. Journal Environmental Quality, 25:227-235.
49. Ritter W.F., Chirnside A.E.M., and Scaborough R.W. 1996. Leaching of Dicamba in a Coastal Plain soil. Journal Environmental Science Health, 31:505-517.
50. Romero E., Sanchez-Rasero F., Pena A., Colina C., and Dios G.1995. Bentazone leaching In Spanish soils. Pesticide Science, 47:7-15.
51. Goodrich J.A., Lynkis B.W., and Clark R.M. 1991. Drinking water from agriculturally contaminated groundwater. Journal Environment Quality, 20:707-717.
52. Hermosin M.C., and Cornejo J. 1993. Binding Mechanism of 2,4- dichlorophenoxyacetic acid by organo-clays. Journal Environmental Quality, 22:325-331.
53. Szmigielska A.M., and Schoenau J.J. 1999. Analysis of Imazethapyr in agricultural soils by ion exchange membranes and a canola bioassay. Communication Soil Science Plant Analysis, 14:1831-1846.
54. Barzegar A. 2004. Advanced Soil Physics. Ahvaz Shahid Chamran University Press. 309 pp.
55. Taylor H.M., Brar G.S.1969. Effect of soil compaction on root development. Agronomy Horticulture and Entomology Department, Texas Tech. University, Lubbock, TX 79409, U.S.A.
56. Trouse A.C. 1971. Soil conditions as they affect plant establishment, root development and yield. p. 241-268. In M.I. Joseph(ed.) Compaction of Agricultural Soils. ASAE Monograph, American Society Agricultural Engineering.
57. Rohani N., Nemati H., and Moghaddam M. 2016. The effect of humic acid on seed germination and seedling growth characteristics of three Radish in salinity stress. Iranian Journal of Seed Science and Research, 4:27-40.
58. Lipuec J., Medvedev V.V., Birkas M., Dumitru E., Lyndina T.E., and Rousseva S. 2003 Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. International Agrophysics, 17:61-69.