بررسی تاثیر اسید سولفوریک بر کارایی اسکوریا در حذف رنگ مالاشیت از محیطهای آبی: تعیین مدل، ایزوترم و سینتیک واکنش
محورهای موضوعی : آلودگی محیط زیست (آب و فاضلاب)مسعود مرادی 1 , شعیب رحیمی 2 , کیومرث شرفی 3
1 - مرکز تحقیقات عوامل محیطی مؤثر بر سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
2 - مرکز تحقیقات عوامل محیطی مؤثر بر سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
3 - مرکز تحقیقات عوامل محیطی مؤثر بر سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
کلید واژه: اسید سولفوریک, اسکوریا, مالاشیت, ایزوترم جذب, سینتیک واکنش.,
چکیده مقاله :
سابقه و هدف: مالاشیت یک رنگ کاتیونی است که به طور وسیعی در صنایع رنگرزی استفاده میشود. این رنگ به دلیل ویژگیهای ساختاری قابلیت تجزیه بسیار کمی داشته و در محیطهای آبی به سختی حذف میشود. با توجه به تاثیر اسید سولفوریک بر ویژگیهای فیزیکی و شیمیایی اسکوریا، هدف از این مطالعه بررسی تاثیر اسید سولفوریک (1، 6 و 12 نرمال) بر کارایی اسکوریا در حذف رنگ مالاشیت از محیطهای آبیوتعیین مدل ، ایزوترم و سینتیک واکنش آن میباشد.
مواد و روش ها: فرایند جذب در شرایط آزمایشگاهی در pH، دوز جاذب، زمانهای تماس مختلف و غلظت ثابت رنگ انجام شد. غلظت باقیمانده در محلول رنگ از طریق جذب بوسیله دستگاه اسپکتروفتومتر (Cary 50 ساخت کمپانی (Perkin Elmerدر طول موج nm 665 اندازه گیری شد. جهت تعیین حجم نمونهو مدل سازی از برنامه نرم افزاری DOEاستفاده گردید. همچنین به منظور درک چگونگی جذب، دادههای بدست آمده با ایزوترمهای جذب لانگمیر، فروندلیچ و سینتیکهای واکنش شبه درجه اول و دوم برازش داده شدند.
یافته ها: نتایج نشان داد که با افزایش نرمالیته اسید، pH، دوز جاذب و زمان تماس، حدف رنگ افزایش مییابد، بطوریکه بیشترین راندمان حذف (100٪) برای جاذب اصلاح شده با اسید سولفوریک6 و 12 نرمال در 11 = pH ، دوز جاذب 4/1 گرم در لیتر و زمان 75 دقیقه بدست آمد. دادههای جذب رنگ نیز از هر دو ایزوترم لانگمیر و فروندلیچ و سینیتک شبه درجه دوم تبعیت مناسبی داشت.
نتیجه گیری: با توجه به نتایج میتوان گفت که جذب رنگ مالاشیت بوسیله اسکوریاهم بصورت چند لایه ای و تک لایه ای صورت میگیرد و اصلاح اسکوریا با اسید سولفوریکبه دلیل تغییرات وسیع شیمیایی (بویژه نسبت سیلیکا به آلومینا) در ساختار جاذب موجب افزایش کارایی آن نسبت به اسکوریا طبیعی میشود.
Background and Objective: Malachite is a cationic dye that is widely used in the dyeing industry. Due to its structural characteristics, this dye has very low degradability and is difficult to remove in aqueous environments. Considering the effect of sulfuric acid on the physical and chemical properties of scoria, the aim of this study is to investigate the effect of sulfuric acid (1, 6 and 12 normal) on the efficiency of scoria in removing malachite dye from aqueous environments and to determine its model, isotherm and kinetics of the reaction.
Materials and Methods: The adsorption process was carried out under laboratory conditions at different pH, adsorbent dosage, contact times and constant dye concentration. The residual concentration in the dye solution was measured by absorption using a Cary 50 spectrophotometer manufactured by Perkin Elmer at a wavelength of 665 nm. The DOE software program was used to determine the sample volume and modeling. Also, in order to understand the absorption, the obtained data were fitted with Langmuir, Freundlich adsorption isotherms and pseudo-first and second order reaction kinetics.
Results: The results showed that with increasing acid normality, pH, adsorbent dose and contact time, the dye removal increases, so that the highest removal efficiency (100%) was obtained for the adsorbent modified with 6 and 12 normal sulfuric acid at pH = 11, adsorbent dose of 1.4 g/L and time of 75 minutes. The dye absorption data also followed both Langmuir and Freundlich isotherms and pseudo-second order kinetics well.
Conclusion: According to the results, it can be said that the adsorption of malachite dye by scoria occurs in both multilayer and monolayer forms. And modifying scoria with sulfuric acid increases its efficiency compared to natural scoria due to extensive chemical changes (especially the ratio of silica to alumina) in the structure of the adsorbent.
[1] Andre B, Santos D, Francisco J, Jules B, Lier V. Review paper on current technologies for decolourisation of textile wastewater: Perspectivs for anaerobic biotechnology. Bioresour.Technol. 2007; 98: 2369-2385.
[2] Amina A, Badie S. Removal of methylene blue by carbons derived from beach stones by H3PO4 activation: Batch and column studies.Journal of Dyes Pigm 2008; 76:282-289.
[3] 3.Banat F, Al-Ahmad R, Bni –Khalid F. Bench-scale and packed bed sorption of methylene blue using treated olive pomace and. CharcoalBioresour Technol. 2007; 98: 3017-3025
[4] Kumr KV, Sivanesan S, Ramamurthi. Adsorption of malachite green onto Pithophora sp., a fresh water alge: equilibrium and kinetic modeling. Journal of Process Biochemistry 2005; 40: 2865 – 2872.
[5] Gupta VK, Mittal A, Krishnah L, Gajbe V. Adsorptionkinitics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep.Purif Technology 2004; 87-96.
[6] Zhang J, Li Y, Zhang C, Jing Y. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundodonax root. Journal of Hazardous Materials 2008; 150: 774-782.
[7] Arivoli S, Hema M, Prasath PMD. Adsorption of Malachite Green onto carbon prepared from Borassus Bark. The Arabian Journal for Science and Engineering 2009; 34(2): 31-42.
[8] Sharma YCU. Removal of Malachite Green from Aqueous Solutions by Adsorption on to Timber Waste. International Journal of Environmental Engineering and Management 2013; 4(6): 631-638. http://www.ripublication.com/ ijeem.htm
[9] Akbal F, Akdemir N, Onar AN. FT-IR spectroscopic detection of pesticide after sorption on to modified pumice. Talanta 2000; 53: 131-135.
[10] Wesley LD. Determination of specific gravity and void ratio of pumice matrials. Geotech Test J 2001; 24: 418-422.
[11] Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G. Adsorption of natural organic Matter (NOM) from waters by iron coted pumice. Chemospher 2007; 66: 130-138.
[12] Geitgey RP. pumice and volcanic cider In: carr, D. D. (ED),Industrial Minerals and Rocks., Society for Mining, Metallurgy,and Exploration. littleeton Co USA PP 1994;803-813.
[13] Bassari A, Akyuz T, Kurtcebe T. The removal of Th, Cs and Sr ions from solution using granulated pumice stone. J Inclusion phenommol 1996; 26:83-88.
[14] Njau KN, Minja RJA, Katima J HY. Pumice soil: Apotential wetland substrate for treatment of domestic wastewater. Water SciTechnol 2003; 48: 85-92.
[15] Lale M, Temocim Z, Bag N. Sorptionbehaviorof copper (Ц), zinc (Ц) and nickel (Ц) on formaldehyde cross-linked Saccharomyces cerevisias immobilized on pumice stone. Fresenius Environ Bull 2001; 10:736-740.
[16] Esmaili A, Nasseri S, Mahvi AH. Adsorption of divalent copper and nickel from aqueous solutions by a natural mineral cartridge (volcanic ash). Journal of Hormozgan University of Medical Sciences 2004: 8(1): 33-39(Persian).
[17] Wohanka W, Lendtke H, luebke M. optimization of slow filtration as ameans of disinfecting nutrient solution. Acta HORTIC 1999; 481: 539-543.
[18] Farizoglu B, Nuhoglu A, Yildis E, KeskinlerB.The performance of pumice as filter bed matrial under rapid filtration condition filter. 2003; 40:41-46.
[19] Rachel A, Rao KVS, Subrahmanyam M, Boule P. Immobilization of Tio2 on pumice stone for the photocatalyti degradation of dyes and dye industry pollutants. Appl CATAL b Environ 2003; 46:77-85.
[20] Rachel A, Lavedrine B, Subrahmanyam Boule MP. Use of porous lavas as supports of photocatalysts. catalcommun 2002; 3:165-171.
[21] Eze kA, Nwadiogbu JO, Nwankwere ET, et al. Effect of Acid Treatments on the Physicochemical Properties of Kaolin Clay. Archives of Applied Science Research 2012; 4 (2):792-794.
[22] Huang CC, Li HS, Chen CH. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. Journal of Hazardous Materials 2008; 159:523–527.
[23] Anbia M, Ghaffari A. Removal of Malachite Green from Dye Wastewater Using Mesoporous Carbon Adsorption. Journal of the Iranian chemical society 2011; 8: 567 – 576.
[24] Ferial A. Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid Interface Science 2005; 286:455-458
[25] Jimenez MMD, Gonzalez MPE, Cid AAP. Adsorption interaction between natural adsorbents and textile dyes in aqueous solution, Colloids Surf 2005; 254:107–114.
[26] Samarghandi MR, Noorisepeher M, Zarabi M, SHahrokhi E, Amraie F. The study of effecincy and mechanism of acid dye black removal using sorbent mineral pumice. Journal of Health and Environment 2009; 3(4):399-410 (in Persian)
[27] Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010; 156:2–10.
[28] Kitis M, Kaplan S S, Karakaya E, Yigit N O and Civelekoglu G. Adsorption of natural organic Matter (NOM) from waters by iron coted pumice.chemospher66, 2007: 130-138.
[29] Lagergren, S. Zurtheorie der sogenannten adsorption gel¨osterstoffe, K. Sven. Vetenskapsakad.Handl 1898; 24: 1–39.
[30] Ho YS, McKay G. Pseudo-second order model for sorption processes, Process. Biochem.1999; 34: 451–465.
[31] Kumar P, Singh H, Kapur M, Kumar Mondal MK. Comparative study of malathion removal from aqueous solution by agricultural and commercial adsorbents. Journal of Water Process Engineering 2014; 3:67–73
[32] Zarabi M, Samarghandi MR, Taghavi SJ, SHahrokhi E, Amraie F. Volcanic pumice stones efficacy in treating textile wastewater. 13th National Conference of Environmental Health, Kerman University of Medical Sciences 2009.(In Persian).
[33] Moracia N, Paolo Calabrò S. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. 2010:91(11): 2336-2341.
[34] Samarghandi MR, Zarrabi M, NooriSepehr M, Amrane A, Safari GhH, Bashiri S. Application of acidic treated pumice as an adsorbent for the removal of Azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian Journal of Environmental Health Sciences Engineering 2012; 9(1) 33-44.
[35] Flessner U, Jones DJ, Rozière J, Zajac J. A study of the surface acidity of acid-treated montmorillonite clay catalysts. Journal of Molecular Catalysis A: Chemical 2001; 168:247–256.
[36] Denise A. Fungaro, Lucas C. Groschea, Alessandro S. Pinheirob, Juliana C. Izidoroa, SueliBorrelyAdsorption of methylene blue from aqueous solution on zeolitic material and the improvement as toxicity removal to living organisms. Orbital Elec. J. Chem Campo Grande 2010:2(3): 235-247.
[37] Akbal F. Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid Interface Science 2005; 286:455-458.
[38] Visa M, Bogatu C, Duta A. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Applied Surface Science 2010:6 (in press).
[39] Do˘gan M, Alkan M, Türkyilmaz A, ÖzdemirY. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials 2004: 109: 141–148
[40] Al-Ghouti M.A Khraisheh MAM, Ahmad MNM, Allen S, Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study, J. Hazard. Mater.2009; 165: 589–598.
[41] Uzun A, Kinetics of the adsorption of reactive dyes by chitosan, Dyes.Pigments. 2006:70:76-83.
[42] Hameed BH, El-Khaiary MI. Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials 2008; 159:574–579.
[43] Ackacha MA, drmoon M. Adsorption of Malachite Green Dye onto Novel Adsorbent: TamarixAphylla Leaves. International Conference on Transport, Environment and Civil Engineering (ICTECE'2012) August 25-26, 2012:141-145.
[44] Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J. Photocatalyticdiscoloration of methyl orange solution by Pt Modified TiO2 loaded on natural zeolite, Journal of Dyes and Pigments 2008; 77 (2): 327-334.
[45] Arivoli S, Hema M, Prasath PMD. Adsorption of Malachite Green onto carbon prepared from Borassus Bark. The Arabian Journal for Science and Engineering 2009; 34(2):31-42.
[46] Zhang J, Li Y, Zhang C, Jing Y. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundodonax root. Journal of Hazardous Materials 2008; 150: 774-782.
[47] Santhi T, Manonmani S, Smitha T. Removal of malachite green from aqueous solution by activated carbon prepared from the Annonasqumosa seed by adsorption. Electronic Journal of Chemistry 2010; 2(2):101-117.
[48] Seey TL, Kassim MJNM. Acidic and Basic Dyes Removal by Adsorption on Chemically Treated Mangrove Barks. International Journal of Applied Science and Technology 2012; 2(3): 270 – 276.
[49] Srikhut S, Hirunpraditkun S, Nuithitikul K. Adsorption of Malachite Green Dye onto Activated Carbon Derived from Durian Peel. Proceedings of the 7th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE '09). http://www.che.kmutnb.ac.th
[50] Panda AK, Mishra BG, Mishra DK, Singh RK. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 363(1–3): 98–104.
[51] Eze kA, Nwadiogbu JO, Nwankwere ET, et al. Effect of Acid Treatments on the Physicochemical Properties of Kaolin Clay. Archives of Applied Science Research 2012; 4 (2):792-794.
[52] Panda AK, Mishra BG, Mishra DK, Singh RK. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 363(1–3): 98–104.
