ارزیابی عملکرد تغییر اقلیم به کمک دو مدل هیدرولوژیکی با ساختار متفاوت
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریصادق واله 1 , بهارک معتمدوزیری 2 , هادی کیادلیری 3 , حسن احمدی 4
1 - دانشجوی دکتری گروه جنگل، مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران.
2 - استادیار گروه جنگل، مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران.
3 - دانشیار گروه جنگل، مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران.
4 - استاد گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.
کلید واژه: تغییر اقلیم, ANN, حوزه آبخیز امامه, SWAT,
چکیده مقاله :
یکی از مهم ترین چالش هایی که بر اکوسیستم های طبیعی و جنبه های مختلف زندگی انسان تأثیر دارد تغییر اقلیم است. تأثیرات گرمایش جهانی بر بخش هیدرولوژی و چرخه آب در طبیعت بسیار جدی است و شناخت این اثرات به صورت کمی، آمادگی بیشتری برای مقابله با تبعات آن ایجاد میکند. در تحقیق حاضر عملکرد دو مدل با ساختارهای متفاوت که یکی از آنها مدل جعبه سیاه (شبکه عصبی مصنوعی) و مدل نیمه توزیعی (SWAT) انتخاب شد و از لحاظ خطا و عدم قطعیت مورد بررسی قرار گرفت. همچنین برای بررسی اثر تغییر اقلیم از مدل بزرگ مقیاس ( CanESM2 ) تحت سناریو RCP2.6 و RCP8.5 استفاده شد. نتایج در این پژوهش نشان داد که مدل های جعبه سیاه عملکرد بهتری نسبت به مدل های فیزیکی دارد. نتایج تغییر اقلیم در این پژوهش نشان میدهد که بارش (3 الی 59درصد) و دما (53/1 الی 93/6 درجه سانتیگراد)روند افزایشی دارد بخصوص این روند افزایشی در مقادیر حدی و سیلاب های تند بیشتر خود رانشان میدهد. همچنین میزان رواناب در دوره آتی 7 الی 11 درصدی افزایش مییابد به همین دلیل در مطالعات شهری حتماً باید به افزایش پدیده های سیلاب در دوره آتی توجه نمود.
One of the major challenges affecting the natural ecosystems and various aspects of human life is climate change. The effects of global warming on the hydrology and water cycle in nature are very serious, and the quantitative recognition of these effects creates more readiness to deal with its consequences. In the present study, the black box model (artificial neural network) and the semi-distributed model (SWAT) were selected and examined according to error and uncertainty. This paper employed the large-scale model (CanESM2) under scenarios RCP2.6 and RCP8.5 to investigate the effect of climate change. The results of climate change in this study showed that runoff (3-59%) and temperature (1.53-6.93 °C) have an increasing trend. In particular, this increasing trend is further exhibited by extreme values and severe floods. Also, the amount of runoff will increase by 7-11% in the upcoming period. For this reason, it is necessary to pay attention in urban studies to the increase of flood occurrence in the future.
احمدی، م.، معتمدوزیری، ب.، احمدی، ح.، معینی، ا.و زهتابیان، غ. 1398.بررسی اثر تعییر اقلیم بر مقادیر جریان حدی حوزه آبخیز کن. نشریه حفاظت منابع آب و خاک، 9 (2): 101-121.
احمدی، م. 1398. بررسی اثر تغییر اقلیم بر مقادیر جریان حدی حوزه آبخیز کن. پایاننامه دکتری آبخیزداری. دانشکده منابع طبیعی و محیط زیست. دانشگاه آزاد اسلامی. واحد علوم تحقیقات.
حسینی، م.، غفوری، م.، مکاریان، ز.و طباطبایی، م. 1395. برآورد بیلان آبی در حوضههای منتهی به خلیج فارس با استفاده از مدل نیمه توزیعی SWAT. پژوهشکده حفاظت خاک و آبخیزداری، 20 (78): 183-194.
زکی زاده، ح. 1398. بررسی عملکرد مدل SWAT و شبکه عصبی مصنوعی در حوزه آبخیز درکه و دارآباد. پایاننامه دکتری آبخیزداری. دانشکده منابع طبیعی و محیط زیست. دانشگاه آزاد اسلامی. واحد علوم تحقیقات.
صمدی، ز. 1388. بررسی عدم قطعیت روشهای کوچک مقیاس کردن آماری- رگرسیونی بر رواناب رودخانه حوضه قره سو. پایاننامه دکتری منابع آب. دانشکده منابع طبیعی و کشاورزی. دانشگاه آزاد اسلامی. واحد علوم تحقیقات.
لطفی راد، م. ادیب، آ. و حقیقی، ع. 1397، تخمین رواناب روزانه به کمک مدل نیمه توزیعی IHACRES در حوضه آبریز ناورود گیلان. انتشارات دانشگاه تهران، 5 (2): 449-460.
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2009). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333 (2–4), 413–430.
Grusson, Y., Sun, X., Gascoin, S., Sauvage, S., Raghavan, S., Anctil, F., and Sáchez-Pérez, J. M. (2015). Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology, 531, 574–588.
Loyeh, N. S., and Jamnani, M. R. (2017). Comparison of different rainfall-runoff models performance: A case study of Liqvan catchment, Iran.
Wilby, R. L., and Dawson, C. W. , 2013. Statistical downscaling model–decision centric (SDSM-DC) version 5.1 supplementary note. Loughborough University, Loughborough.
Wilby, R.L. and Dawson, C.W., 2007. SDSM 4.2-A decision support tool for the assessment of regional climate change impacts. United Kingdom.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. O. 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting Material of the Intergovernmental Panel on Climate Change, Available from the DDC of IPCC TGCIA, 27.
Wilby, R. L., Dawson, C. W., and Barrow, E. M. 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17 (2), 145–157.
_||_