بررسي تراز آب زيرزميني بر مبناي خشکسالي ژئولوژيک با استفاده از تئوري موجک (مطالعه موردي: آبخوان بوشکان)
محورهای موضوعی : مدیریت منابع آب
مهرداد دنیادیده
1
,
علیرضا نیکبخت شهبازی
2
,
حسین فتحیان
3
,
نرگس ظهرابی
4
1 - گروه مهندسي منابع آب، واحد اهواز، دانشگاه آزاد اسلامي، اهواز، ايران.
2 - گروه مهندسي منابع آب، واحد اهواز، دانشگاه آزاد اسلامي، اهواز، ايران.
3 - گروه مهندسي منابع آب، واحد اهواز، دانشگاه آزاد اسلامي، اهواز، ايران.
4 - گروه مهندسي محيط زيست، واحد تهران شمال، دانشگاه آزاد اسلامي، تهران، ايران.
کلید واژه: آبخوان, بوشکان, روش موجک, مدل آب زيرزميني,
چکیده مقاله :
زمينه و هدف: با توجه به افت شديد آبهاي زيرزميني دشتهاي کشور به دنبال برداشت بي رويه از آنها براي اهداف کشاورزي، مديران به دنبال راهکارهاي مديريت و احيا سفرههاي آب زيرزميني هستند. يکي از راهکارهاي جبران افت سطح آب زيرزميني که خود از مؤثرترين عوامل نابودي ظرفيت تغذيه و کاهش افت کيفيت در پهنه آب زيرزميني است، در کنار سناريوهاي کاهش برداشت از چاههاي کشاورزي تهيه طرحهاي ممنوعيت با کمترين عدم قطعيت براساس حساسيت ناحيهاي به آلودگي است. در اين مطالعه بهمنظور استخراج روابط بارش- خشکسالي در يک محدوده منتخب تحت عنوان آبخوان بوشکان، از مجموع روابط هيدرولوژيکي و همچنين مدلهاي عددي مادفلو با استفاده از شاخص آسيبپذيري و ناحيهبندي استفاده شد.
روش پژوهش: استخراج حجم و نوع توزيع جريان در آبخوان که مرکز اثر خشکسالي هيدرولوژيک است، توسط روش تحليل منطقهاي و استخراج خشکساليهاي با دوره بازگشت تاريخي و در عين حال محتمل از بررسي هيدروگراف مستخرج از مدل MODFLOW صورت پذيرفت. خروجي مطالعات هيدرولوژيکي که بر طبق عناصر فيزيوگرافي تهيه شد بهعنوان وروديهاي مدل توزيع جريان آب زيرزميني در ناحيه مذکور استفاده گرديده. بهمنظور تهيه يک ساختار تعيين مناطق حساس در خشکسالي، از پردازش تصاوير ماهواره Sentinel-2 در تهيه شاخص NDWI بهعنوان شاخص استاندارد شده تغييرات ساختار آب و همچنين پوشش زمين، و يک لايه ساختار زمين تدقيق شده بر اساس طبقه بندي به روش يادگيري ماشين و روش EO استفاده شد. لايه ساختار زمين تحت عنوان Geology، ملاک کلاسه بندي نواحي در تعيين اولويت خشکسالي (از منظر تغذيه آب زيرزميني) انتخاب شد.
يافتهها: ارزيابي درستي روش مذکور، تهيه يک جدول ارتباط تغييرات شاخص NDWI با کلاسههاي لايه Geology بود. اين همبستگي در لايه کلاسه بندي تغييرات ارتفاعي مشاهده نشد؛ با اين حال بررسي روند و بسامد (موجک) سري هاي زماني تغييرات آب رابطه مشخصي را با افت تراز آب زيرزميني مشخص کرد. از نتايج مشخص اين پژوهش ميتوان به اين موضوع اشاره کرد که براي تعيين نواحي خشکسالي، و يا مفهوم مقابل آن، يعني نواحي منتشر کننده خشکسالي به آب زيرزميني، ملاک اساسي بايد تنوع زمين شناسي در تحليل همزمان با توسعه کشاورزي منطقه باشد. با استفاده از تصاوير ماهوارههاي سنتينل ميشود بر طبق تشريحات حاضر در اين پژوهش، بازههاي کلاسه بندي شده اي را جهت دريافت بيشترين تغييرات شاخصNDWI کشف کرد. اين بازههاي مکاني حدود تصميم گيري براي اجراي سازههاي انحراف جريان، و حتي محدوديتهاي کشت به جهت بازسازي اقليم در مقابل خشکساليهاي منتج از کشاورزي را بهتر معين ميکند. مقادير اوليه و نهايي پس از اجراي دوره واسنجي صورت مشابهي از پارامترهاي هيدروليکي را نمايش ميدهد. مقدار خطاي نسبي RMS يا RMSE معادل با 86/2 ميباشد که دقت بالاي شبيهسازي را نشان ميدهد.
نتايج: مدل رياضي MODFLOW در 126 دوره ماهانه مورد شبيهسازي و در 25% دوره زماني نهايي مورد صحت سنجي قرار گرفت. حد کل خطا تا 18/3 کاهش يافت. اين مقدار با توسعه مدل مفهومي و ارائه داده پايه بيشتر ميتواند بيشتر کاهش يابد. دشت بيشتر از نواحي مياني و شمالي چند متبادل آبخوان، تغذيه ميشود. با توجه به مطالعه نقشه تراز آبهاي زير زميني، آب اين منطقه از جهت شمال و شمال شرق به طرف مركز دشت و سپس جنوب و جنوب غرب جريان دارد؛ که با توجه به گسترش نواحي کشاورزي، از اين نظر جهت جريان، عامل گسترش آلودگي ميباشد. نتايج تراز آبخوان براي اين مدت نشان ميدهد كه سطح آب در بيشتر قسمتهاي دشت، همواره در حال پايين رفتن بوده و ميزان بالا آمدگي آن در دورههايتر همواره كمتر از ميزان پايين افتادگي آن در دورههاي خشك است. همچنين نتايج نشان ميدهد که با فرض اينکه ميزان تخليه و تغذيه دشت همانند سالهاي قبل باشد، اکثر چاههاي مشاهدهاي با تشديد شيب افت سطح آب مواجه خواهند شد.
Background and Aim: Due to the sharp decline of the underground water in the country's plains due to their indiscriminate extraction for agricultural purposes, managers are looking for solutions to manage and restore underground water tables. One of the solutions to compensate for the drop in the underground water level, which is one of the most effective factors in destroying the recharge capacity and reducing the quality loss in the groundwater area, is to prepare ban plans with the least uncertainty based on the regional sensitivity to pollution, along with the scenarios of reducing the withdrawal from agricultural wells. In this study, in order to extract rainfall-drought relationships in a selected area called Bushkan aquifer, the sum of hydrological relationships as well as numerical models were used up to the use of vulnerability index and zoning.
Method: Extraction of the volume and type of flow distribution in the aquifer, which is the center of the effect of hydrological drought, was done by the method of regional analysis and the extraction of droughts with a historical and at the same time probable return period from examining the hydrograph extracted from the MODFLOW model. The output of the hydrological studies which were prepared according to the physiographic elements were used as the inputs of the groundwater flow distribution model in the mentioned area. In order to prepare a structure for determining sensitive areas in drought, the processing of Sentinel-2 satellite images was used to prepare the NDWI index as a standardized index of water structure changes as well as land cover, and a refined land structure layer based on classification using machine learning and EO methods. The earth structure layer under Geology was chosen as the criteria for classifying areas in determining the priority of drought (from the point of view of underground water supply).
Results: The evaluation of the correctness of the mentioned method was to prepare a correlation table of changes in the NDWI index with the classes of the Geology layer. This correlation was not observed in the elevation change classification layer; however, the examination of the trend and frequency (wave) of the time series of water changes determined a specific relationship with the drop in the underground water level. From the specific results of this research, it can be pointed out that in order to determine the drought areas, or its opposite concept, i.e. the areas spreading drought to the underground water, the basic criterion should be the geological diversity in the analysis at the same time as the agricultural development of the region. By using the images of Sentinel satellites, it is possible to discover the classified intervals to receive the most changes of the NDWI index, according to the descriptions in this research. These spatial intervals better determine the decision-making limits for the implementation of flow diversion structures, and even the limits of cultivation in order to restore the climate against droughts resulting from agriculture. The initial and final values after the model calibration showed a similar form of hydraulic parameters. The RMS or RMSE relative error value was equal to 2.86, which indicates high simulation accuracy.
Conclusion: MODFLOW mathematical model was simulated in 126 monthly periods and validated in 25% of the final time period. The total margin of error was reduced to 18.3. This amount can be further reduced by developing the conceptual model and providing more basic data. The plain is mostly fed from the middle and northern areas of the aquifer. According to the study of the underground water level map, the water in this area flows from the north and northeast towards the center of the plain and then south and southwest; considering the expansion of agricultural areas, the direction of the flow is the cause of the spread of pollution. The results of the aquifer level for this period show that the water level in most parts of the plain is always going down and the rate of its rise in wet periods is always less than the rate of its fall in dry periods. Also, the results show that assuming that the amount of draining and feeding of the plain is the same as in previous years, most of the observation wells will face an intensification of the water level drop.
Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A., 2012. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 48, W01528.
Afan, H.A., El-shafie, A., Mohtar, W.H.M.W., Yaseen, Z.M., 2016. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction. J. Hydrol.
Chong K. L., 2021, "Review on Dam and Reservoir Optimal Operation for Irrigation and Hydropower Energy Generation Utilizing Meta-Heuristic Algorithms," in IEEE Access, vol. 9, pp. 19488-19505.
Dixit, P., Londhe, S., Deo, M.C., 2016. Review of Applications of Neuro-Wavelet Techniques in Water Flows. Ina. Lett. 1, 99–104.
Dogani, A. Dourandish, M. Ghorbani and M. R. Shahbazbegian, 2020, "A Hybrid Meta-Heuristic for a Bi-Objective Stochastic Optimization of Urban Water Supply System," in IEEE Access, vol. 8, pp. 135829-135843.
Du, K., Zhao, Y., Lei, J., 2017. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series. J. Hydrol. 552, 44– 51.
Fahimi, F., Yaseen, Z.M., El-shafie, A., 2017. Application of soft computing-based hybrid models in hydrological variables modeling: a comprehensive review. Theor. Appl. Climatol. 128, 875–903.
Hoaglund III, J.R. and PoIllard, D., 2003. Dip and anisotropy effects on flow using a vertically skewed model grid. Groundwater, 41(6), pp.841-846.
Jeong, C.B., Kang, H.M., Lee, M.C., Kim, D.H., Han, J., Hwang, D.S., Souissi, S., Lee, S.J., Shin, K.H., Park, H.G. and Lee, J.S., 2017. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Scientific reports, 7(1), p.41323.
Khazaee Poul, A., Shourian, M. & Ebrahimi, H. A, 2019, Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction. Water Resour Manage 33, 2907–2923.
Kresic, N., 2014. Hydraulic methods. In Methods in Karst hydrogeology (pp. 65-92). CRC Press.
Minh, D., Wang, H.X., Li, Y.F. and Nguyen, T.N., 2022. Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review, pp.1-66.
Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., 2014. Applications of hybrid Wavelet-Artificial Intelligence models in hydrology: A review. J. Hydrol. 514, 358–377.
Saatsaz, M. A historical investigation on water resources management in Iran. Environ Dev Sustain 22, 2020, 1749–1785
Sang, Y.-F., 2013. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 122, 8–15.
Schilling, J., Hertig, E., Tramblay, Y. et al. Climate change vulnerability, water resources and social implications in North Africa. Reg Environ Change 2020 20, 15.
Sentinel Hub, https://www.sentinel-hub.com, 2021, Sinergise Solutions d.o.o., a Planet Labs company.
Shi, B. Wang, P. Jiang, J. Liu, R. 2018, Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies, Science of The Total Environment, Volumes 610–611, Pages 1390-1399, ISSN 0048-9697.
Shi, B. Wang, P. Jiang, J. Liu, R. 2018, Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies, Science of The Total Environment, Volumes 610–611, Pages 1390-1399, ISSN 0048-9697.
Solomatine, D.P., Ostfeld, A., 2008. Data-driven modelling: some past experiences and new approaches. J. Hydroinformatics 10, 3–22.
Spiro D. Alexandratos, Naty Barak, Diana Bauer, F. Todd Davidson, Brian R. Gibney, Susan S. Hubbard, Hessy L. Taft, and Paul Westerhof ACS Sustainable Chemistry & Engineering 2019 7 (3), 2879-2888.
Water Resources Report, 2020. Iran water resources management organization. [in Persian]
Yaseen, Z.M., El-shafie, A., Jaafar, O., Afan, H.A., Sayl, K.N., 2015. Artificial intelligence-based models for stream-flow forecasting: 2000-2015. J. Hydrol.
Zhang, Shuifeng; Zhang, Jinchi; Meng, Miaojing; Chen, Peixian; Liu, Xin; Liu, Guoliang; Gu, Zheyan. 2021. "A Multi-Objective Decision Making System (MDMS) for a Small Agricultural Watershed Based on Meta-Heuristic Optimization Coupling Simulation" Water 13, no. 10: 1338.