بررسی شاخصهای فرسایش سطحی خاک و ارتباط آنها با خصوصیات دامنه در مراتع منطقه نیمهخشک
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریعلی رضا واعظی 1 , زهرا بیات 2 , مجید فرومدی 3
1 - گروه علوم خاک-دانشکده کشاورزی-دانشگاه زنجان
2 - دانش آموخته کارشناسی ارشد فیزیک و حفاظت خاک دانشگاه زنجان
3 - دانشجوی دکتری فیزیک و حفاظت خاک دانشگاه زنجان
کلید واژه: فرسایش دامنه, پوشش گیاهی, تخریب خاک, درجه شیب,
چکیده مقاله :
فرسایش سطحی یکی از مهمترین عوامل تخریب خاک و کاهش تدریجی باروری خاک میباشد. مطالعات اندکی در مورد شاخصهای فرسایش سطحی در دامنههای مرتعی منطقه نیمهخشک انجام گرفته است. این مطالعه بهمنظور بررسی شاخصهای فرسایش سطحی و رابطه آنها با خصوصیات دامنه در منطقهای نیمهخشک انجام شد. برای این منظور پنج دامنه جنوبی تحت فرسایش سطحی با شیبهای متفاوت (9، 13، 17، 31 و 33 درصد) در زنجان مورد بررسی قرار گرفت. نمونههای خاک از دو عمق (صفر تا 5 و 5 تا 15 سانتیمتر) در چهار موقعیت با فاصله دو متر در طول شیب در دو تکرار تهیه و در کل 80 نمونه خاک برای آزمایشهای توزیع اندازه ذرات برداشت شدند. شاخصهای فرسایش سطحی بر اساس نسبت قطر ذرات خاک در فراوانی معین در خاک سطحی به خاک زیرسطحی بیان شد و بر این اساس نسبت قطر ذرات خاک در فراوانی40 (d401/d402)، 50 (d501/d502)، 60 (d601/d602) و 70 درصد (d701/d702) بهدست آمد. همچنین نسبت میانگین وزنی قطر ذره (MWDp1/MWDp2)، میانگین هندسی (dg1/dg2) و انحراف معیار هندسی (δg1/δg2) در خاک سطحی به خاک زیرسطحی تعیین شد. بر اساس نتایج حاصل از این پژوهش تفاوتهای معنیدار بین دامنهها از نظر شاخصهای فرسایش سطحی وجود داشت اما بین موقعیتها روی دامنه، تفاوت چشمگیری مشاهده نگردید. در دامنههای با شیب بالا، فراوانی ذرات ریزدانه (سیلت و رس) و مواد آلی در خاک سطحی به شدت کم بود. تجزیه و تحلیل نتایج رگرسیون خطی نشان داد که نسبت میانگین وزنی قطر ذرات (MWDp1/MWDp2) رابطهای قوی با شیب دامنه (001/0P< و51/0R2=) دارد. این پژوهش نشان داد که نسبت میانگین وزنی قطر ذرات (MWDp1/MWDp2) شاخصی مناسب برای ارزیابی فرسایش سطحی در دامنههای منطقه نیمهخشک مورد بررسی است.
Surface erosion is a one of the major factors of soil degradation and gradual decline in soil productivity. Little studies have been done on the surface erosion indices in the semi-arid rangelands. Therefore, this study was conducted to quantify surface soil erosion indices using the land characteristics in a semi-arid region. Five southern hillslopes with different slope gradients (9, 13, 17, 31 and 33%) which subjected to surface erosion were selected in Zanjan province. Soil samples were collected from two depths (0-5 and 5-15 cm) in four locations at a 2-m distance along the slope at two replications. A total of 80 soil samples were collected for analyzing particle size distribution. Soil surface erosion indices were determined using the proportion of particle diameter for given frequency in surface and sub-surface soils. Toward this, the proportion of particle diameter in the frequency of 40 (d401/d402), 50 (d501/d502), 60 (d601/d602) and 70 % (d701/d702) was computed. Additionally, proportions of mean weight diameter (MWDp1/MWDp2), geometric mean diameter (dg1/dg2) and geometric standard deviation (δg1/δg2) of surface and subsurface soils particles were determined. Based on the results, significant differences were found among the hillslopes in all soil surface erosion indices, whereas the differences for the locations along the hillslopes were not statistically significant. In the steep slopes, the frequency of fine particles (silt and clay) and organic matter content was very low in surface soil. Multiple linear regression analysis appeared a strong relationship between the MWDp1/MWDp2 and slope gradient (R2= 0.51, p< 0.001). This study revealed that the MWDp1/MWDp2 is the proper index to evaluate soil surface erosion in the semi-arid hillslopes.
عبدینژاد، پ.، فیضنیا، س. و پیروان، ح. 1390. بررسی خصوصیات فیزیکوشیمایی، مکانیکی و فرسایشپذیری سازندهای مارنی استان زنجان. مرکز تحقیقات کشاورزی و منابع طبیعی استان زنجان، 25 صفحه.
کیانیهرچگانی، م.، صادقی، س.ح.ر. و اسدی، ح. 1396. تغییرپذیری غلظت و توزیع اندازه مؤثر ذرات رسوب در مراحل ابتدایی و تکاملی تولید رواناب از شیبها و شدتهای مختلف بارندگی. نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، 9(2): 216-205.
محمودآبادی، م. و سیرجانی، الف. 1391. بررسی مکانیسمهای حمل ذرات رسوب در فرسایش ورقهای با استفاده از آزمایش فلوم. مجله مهندسی و مدیریت آبخیز، 4(1): 11-1.
واعظی، ع.ر. و عبادی، م. 1396. توزیع اندازه ذرات منتقله در اثر فرسایش سطحی در شدتهای مختلف باران و درجات شیب. نشریه آب و خاک (علوم و صنایع کشاورزی)، 31(1): 229-216.
واعظی، ع.ر. و قرهداغلی، ح. 1392. کمیسازی گسترش فرسایش شیاری در خاکهای مارنی در حوزه آبخیز زنجانرود در شمال غرب زنجان. نشریه آب و خاک، 27: 872-881.
واعظی، ع.ر.، نوقان، م. و فرومدی، م. 1396. وابستگی خصوصیات رواناب به ابعاد کرت در کشتزار دیم تحت بارانهای منطقه نیمهخشک. نشریه حفاظت منابع آب و خاک، 7(1): 27-16.
Angers, D.A. and Mehuys, G.R. 1993. Aggregate stability to water. In: Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers. Boca Raton, pp: 651–657.
Assouline, S. and Ben-Hur, M. 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66(3): 211-220.
Bennett, S. 1995. An experimental study of flow, bed load transport and bed topography under conditions of erosion and deposition and comparison with theoretical models. Sedimentology, 42:117-146.
Berthouex, P.M. and Brown, L.C. 1994. Statistics for Environmental Engineers, Lewis Publishers. Spanish Journal of Agriculture Research, 2(1): 42–58.
Blake, G.R. and Hartge, K.H. 1986. Bulk density, In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1, 2nd ed. Agronomy Monograph, 9. American Society of Agronomy. Madison, WI. pp: 363-375.
Castrignanò, A., Giugliarini, L., Risaliti, R. and Martinelli, N. 2000. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97(1): 39-60.
Celso, A.G. 1997. Developing a sheet erosion equation for a semiarid region, IAHS Publ No. 245.
Dahnke, W. and Whitney, D. 1988. Measurement of soil salinity. Recommended chemical soil test procedures for the North Central Region. North Dakota Agric. Exp. Stn. Bull. pp: 32-34.
Defersha, M., Quraishi, S. and Melesse, A. 2011. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrology and Earth System Sciences, 15(7): 2367-2375.
Dennis, M. and Rorke, B. 1999. The relationship of soil loss by interrill erosion to slope gradient. Catena, 38(2): 211–222.
Descroix, L., Gonzalez Barrios, J., Viramontes, D., Poulenard, J., Anaya, E., Esteves, M. and Estrada, J. 2008. Gully and sheet erosion on subtropical mountain slopes: their respective roles and the scale effect. Catena, 72(3): 325-339.
Dlamini, P., Orchard, G., Jewitt, S., Lorentz, P., Titshall, L. and Chaplot, V. 2011. Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa. Agricultural Water Management, 98(11): 1711-1718.
Ekwue, E., Bharat, C. and Samaroo, K. 2009. Effect of soil type, peat and farmyard manure addition, slope and their interactions on wash erosion by overland flow of some Trinidadian soils. Biosystems Engineering, 102(2): 236-243.
F.A.O. 1984. Soil bulletin, guideline land evaluation for rain fed agriculture. Chapter, 2, pp: 52.
Gomez, J. 2013. Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil and Tillage Research, 75(1): 3-18.
Govers, G. 1990. Empirical relationships for the transport capacity of overland flow. IAHS Publication, 189: 45-63.
Jin, C.X. 1996. The role of slope gradient on slope erosion. Geographical Research, 15(3): 57–63.
Jordan, A. and Martinez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255: 913-919.
Kateb, I., Zhang, F., Zhang, C. and Mosandl, R. 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in Southern Shaanxi Province, China. Catena, 105: 1–10.
Khan, F., Hayat, Z., Ahmad, W., Ramzan, M., Sharif, M., Mian, I.A. and Hanif, M. 2013. Effect of slope position on physico-chemical properties of eroded soil. Soil Environment, 32: 22–28.
Kinnell, P.I.A. 2000. The effect of slope length on sediment concentrations associated with side slope erosion. Soil Science Society American Journal, 64:1004-1008.
Kinnell, P.I.A. 2006. Simulations demonstrating interaction between coarse and fine sediment loads in
rain-impacted flow. Earth Surface Processes and Landforms, 31: 355-367.
Liu, W., Luo, Q., Lu, H., Wu, J. and Duan, W. 2017. The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. Catena, 149:167-175.
Mamedov, A., Levy, I.J., Shainberg. G. and Letey, J. 2001. Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff. Soil Research, 3: 1293-1305.
Mamedov, A., Shainberg, I. and Levy, G. 2002. Wetting rate and sodicity effects on interrill erosion from semi-arid Israeli soils. Soil and Tillage Research, 68(2): 121-132.
Morgan, R., Quiton, J., Smith, R., Govers, G., Poesen, J., Auerswald, K., Chisci, G., Torri, D. and Stycaen, M. 1998. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms, 23(6): 527–544.
Nearing, M. and Rieke, M. 2005. Soil detachment by shallow flow at low slopes. Soil Science Society of America Journal, 55: 339-344.
Pearson, K., 1896. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, 187, pp: 253-318.
Riss, M. and Faucette, B. 2002. Compost utilization foreseen control cooperative Extension service, The University of Georgia College of Agriculture and Environmental Sciences Faucet. Soil and Tillage Research, 75(1): 3-18.
Shapiro, S.S. and Wilk, M.B. 1965. An analysis of variance test for normality (complete samples). Biometrika, 52 (3–4), 591–611.
Shi, Z.H., Fang, N.F., Wu, F.Z., Wang, L., Yue, B.J. and Wu. G.L. 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 454- 455:123-130.
Stolzenberg, R.M. 2004. Multiple regression analysis. Handbook of data analysis, 165, p. 208.
Tejada, M. and Gonzalez, J.L. 2007. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil and Tillage Research, 93: 197-205.
Toy, T.J., Foster, G.R. and Renard, K.G. 2002. Soil Erosion: Processes, Prediction, Measurement, and Control. John Wiley and Sons, New York, pp: 25-43.
Tsui, C.C., Chen, Z.S. and Hsieh, C.F. 2004. Relationships between soil properties and slope position in a lowland rain Forest of southern Taiwan. Geoderma, 123: 131–142.
Vaezi, A., Sadeghi, S., Bahrami, H. and Mahdian, M. 2008. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology, 97(3): 414–423.
Walkley, A. and Black, C.A. 1947. Determination of organic matter in the soil by chromic acid digestion. Soil Science, 63: 251–264.
Wischmeier, W.H. and Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning. In: Agriculture Handbook No. 537. US Department of Agriculture, Washington, DC, pp: 13-27.
Zhang, G., Shen, R., Luo, R., Cao, Y. and Zhang, C. 2010. Effects of sediment load on hydraulics of overland flow on steep slopes. Earth Surface Processes and Landforms, 35(15): 1811–1819.
Zhang, G.H., Liu, B.Y., Liu, G.B., He, X.W. and Nearing, M.A. 2003. Detachment of undisturbed soil
by shallow flow. Soil Science Society American Journal, 67: 713-719.