کارایی مصرف آب گندم تحت شرایط تنش همزمان شوری و رطوبتی با کاربرد بایوچار برگ خرما
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمهرداد نوروزی 1 , سیدحسن طباطبائی 2 , محدرضا نوری 3
1 - عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی بوشهر
2 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران
3 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران
کلید واژه: تنش رطوبتی, تنش شوری, ار, روابط عملکرد شوری,
چکیده مقاله :
به منظور بررسی اثر بایوچار برگ خرما بر کارآیی مصرف آب و برخی مؤلفه های عملکرد گندم ) Triticum aestivum L. ( تحت تنش های توأم رطوبتی و شوری، آزمایشگلدانی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار و طی یک فصل زراعی ) 95 - 1394 ( در مرکز تحقیقات کشاورزی استان بوشهر انجام گرفت.تیمارها شامل بایوچار برگ خرما )صفر و 3 درصد وزنی(، فاصله آبیاری ) 3 ، 7 و 12 روز( و شوری آب ) 1 / 1 ، 8 / 3 ، 8 و 12 دسی زیمنس بر متر( بودند. نتایج نشان داد که اثرات بایوچار بر کارآیی مصرف آب و عملکرد گندم تحت تنش های توأم رطوبتی و شوری معنی دار ) P<0.05 ( بود. مقادیر عملکرد دانه، وزن خشک ساقه و وزن خشک ریشه به ترتیب 22 ، 38 و 20 درصد افزایش داشت. مقادیر تبخیر و تعرق، کارآیی مصرف آب و رطوبت وزنی خاک قبل از آبیاری به ترتیب 6 / 18 ، 7 / 8 و 23 درصد افزایش داشت. مقادیر پاسخ عملکردی گیاه به تنش رطوبتی ) Ky ( برای عملکرد دانه، وزن خشک ساقه و وزن خشک ریشه به طور قابل توجهی کاهش داشت که بیانگرکاهش حساسیت گیاه به تنش رطوبتی می باشد. در اثر کاربرد بایوچار، مقادیر شیب کاهش عملکرد و حد آستانه تحمل به شوری برای عملکرد دانه، وزن خشک ساقه ووزن خشک ریشه کاهش داشت که بیانگر نقش بایوچار در افزایش مقاومت گیاه به تنش شوری می باشد. بنابراین، می توان بایوچار برگ خرما را یک اصلاح کننده مؤثربرای افزایش تولید کشاورزی و بهره وری مصرف آب قلمداد نمود. با این وجود، مطالعات بیش تری در شرایط مزرعه و خارج از گلدان توصیه می شود.
A pot experiment carried out to study the effects of date palm leaves biochar on WUE and some other performance components of wheat (Triticum aestivum L.) under conjunctive water and salinity stress conditions. The experiment was factorial based on a randomized complete design (RCD) with three replications during one growing season (2015-16). The treatments included biochar application rates (0 and 3% w/w), irrigation interval levels (3, 7 and 12 days) and water salinity levels (1.1, 3.8, 8 and 12 dS/m). The results showed significant (P<0.05) effects of biochar on wheat WUE and yield components under conjunctive water and salinity stress conditions. Mean values of grain yield (GY), shoot dry weight (SDW) and root dry weight (RDW) increased 22%, 38% and 20% respectively, due to biochar addition. Also, mean values of evapotranspiration (ET), water use efficiency (WUE) and soil gravimetric water content before irrigation increased 18.6%, 8.7% and 23% respectively. Values of crop yield response factors to water stress (Ky) for GY, SDW and RDW noticeably decreased in biochar treated pots, indicating reduced crop sensitivity to water deficiency. In addition, biochar addition reduced the slops of yield reduction and thresholds of soil solution salinity for GY, SDW and RDW indicating the increased crop tolerance to salinity. Therefore, biochar of date palm leaves, might be an effective conditioner to improve crop performance and water productivity particularly under water and salinity stress, although, further studies under field conditions is recommended to verify these results.
زلفی، ب.، پوزش شیرازی، م.، نوروزی م. 1394 . بررسی تغییرات شوری و سدیمی خاک در پایگاه های مطالعاتی پایش کیفیت
خاک در استان بوشهر. طرح تحقیقاتی به شماره مصوب 90006 - 9002 - 10 - 10 - 14 ساازمان تحقیقاات، آماوزش و تارویج
کشاورزی )در دست انتشار(.
سرائی تبریزی، م.، همایی، م.، بابازاده، ح.، کاوه، ف.، پارسی نژاد، م. 1394 . مدل سازی پاسخ ریحاان ) Ocimum basilicum L. )
به تنش های توأمان شوری و کمبود نیتروژن. نشریه علوم آب و خاک )علوم و فنون کشاورزی و منابع طبیعی(، سال نوزدهم،
شماره هفتاد و سوم، صفحات 45 تا 57 .
نوروزی، م.، طباطبائی، س. ح.، نوری، م. ر.، متقیان، ح.ر. 1395 . اثرات کوتاه مدت بایوچار برگ خرماا بار حفاظ رطوبات در
خاک لوم شنی. نشریه حفاظت منابع آب و خاک، سال ششم، شماره دوم، صفحات 137 تا 150 .
Alburquerque, J.A., Salazar, P., Villar, R., Barrón, V., Torrent, J., Del Campillo, M.C., and Gallardo, A. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development 33(3): 475–484.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration. Irrigation and Drainage Paper, No. 56, Food and Agriculture Organization (FAO), Rome, Italy. 300p.
Akhtar, S.S., Andersen, M.N., Liu, F. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68.
Akhtar, S.S., Li, G.T., Andersen, M.N. and Liu, F.L. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138:37–44.
Andrenelli, M.C., Maienzab, A., Genesiob, L., Migliettab, F., Pellegrini, S., Vaccari, F.P. and Vignozzi, N. 2016. Field application of pelletized biochar: Short-term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 163: 190–196.
Ayers, R.S. and Westcott, D.W. 1985. Water quality for agriculture: Irrigation and Drainage Paper, No. 29. FAO. Rome. Italy. 174p.
Babazadeh, H., Sarai Tabrizi, M. and Hassanpour Darvishi, H. 2016. Adopting adequate leaching requirement for practical response models of basil to salinity, International Agrophysics 30: 275-283.
Baronti, S., Vaccari, F.P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C. and Genesio, L. 2014. Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy 53: 38–44.
Brown, C.E., Pezeshki, S.R. DeLaune, R.D. 2006. The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environmental and Experimental Botany 58, 140-148.
Bruun, E.W., Petersen, C.T., Hansen, E., Holm, J.K. and Hauggaard-Nielsen, H. 2014: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Management 30: 109–118.
Doorenbos, J., Kassam, A.H. 1979. Yield response to water. Irrigation and Drainage Paper No. 33. FAO. Rome. Italy. 193p.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185–212.
Glaser, B. Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils 35: 219–230.
Goldberger, J.R. 2008. Diffusion and adoption of non-certified organic agriculture: a case study from semi-arid Makueni District. Kenya. Journal of Sustainable Agriculture, 32(4): 597–609.
Hardie, M., Clothier, B., Bound, S., Oliver, G. and Close, D. 2014. Does biochar influence soil physical properties and soil water availability? Plant Soil 376: 347–361.
Hirich, A., Shoukr-Allah, R. and Jacobsen, S.E. 2014. Deficit Irrigation and Organic Compost Improve Growth and Yield of Quinoa and Pea. Journal of Agronomy and Crop science, 200(5): 390-398.
Igbadun, H.E., Tarimo, A.K., Salim, B.A. and Mahoo, H.F. 2007. Evaluation of selected crop water production functions for an irrigated maize crop. Agricultural Water Management, 94:1–10.
Lehmann, J., Gaunt, J. and Rondon, M. 2006. Biochar sequestration in terrestrial ecosystem sea review. Mitigation and Adaptation Strategies for Global Change 11: 403-427.
Lehmann, J. and Joseph, S. 2009. Biochar for Environmental Management. Science and Technology. James & James. Earthscan. London. U.K. pp.67–84.
Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. 2011. Biochar effects on soil biota - a review. Soil Biology and Biochemistry, 43:1812-1836.
Liu, X., Han, F., Liu, W., Wang, Z., Zhao, X. and Zhang, X. 2016. Impacts of Biochar Amended Soils on Ryegrass (Lolium perenne L.) Growth under Different Water Stress Conditions. Intentional Journal of Agriculture and Biology, 18: 630-636.
Maas, E.V. and Hoffman, G.J. 1977. Crop salt tolerance -current assessment. Journal of Irrigation and Drainage Division ASCE, 103:115-134.
Mostafazadeh-Fard, B., Heidarpour, M., Aghakhani, A. and Feizi, M. 2008. Effects of leaching on soil desalinization for wheat crop in an arid region. Plant Soil Environment, 54(1): 20–29.
Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Reviw of Plant Biology 59: 651–681.
Obia, A., Mulder, J., Martinsen, V., Cornelissen, G. and Børresen, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155: 35–44.
Ouyang, L. Wang, F. Tang, J. Yu, L. and Zhang, R. 2013. Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition 13 (4): 991-1002.
Pejić, B., Maksimović, L., Škorić, D., Milić, S., Stričević, R. and Ćupina, B. 2009. Effect of water stress on yield and evapotranspiration of sunwlower. Helia, 32 (51):19-32.
Peng, F. He, P.W. Luo, Y. Lu, X. Liang, Y. and Fu, J. 2012. Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste. Clean-Soil Air Water 40: 493–498.
Rao, S.S., Regar, P.L., Tanwar, S.P.S. and Singh, Y.V. 2013. Wheat yield response to line source sprinkler irrigation and soil management practices on medium-textured shallow soils of arid environment. Irrigation Science, 31:1185-1197.
Sohi, S.P. Krull, E., Lopez-Capel, E. and Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105: 47–82.
Sepaskhah, A.R. and Beirouti, Z. 2009. Effect of irrigation interval and water salinity on growth of madder (Rubina tinctorum L.). International Journal of Plant Production 3(3): 1-16.
Sepaskhah, A.R. and Yarami, N. 2009. Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. Journal of Horticultural Science and Biotechnology, 84(2): 216-222.
Stewart, J.I., Danielson, R.E., Hanks, R.J., Jackson, E.B., Hagan, R.M., Pruitt, W.O., Franklin, W.T. and Riley, J.P. 1977. Optimizing Crop Production through Control of Water and Salinity Levels in the Soil. Utah Water Research Laboratory Progress Report No. 151. Logan. Utah. 191p.
Thomas, S.C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A. and Winsborough, C. 2013. Biochar mitigates negative effects of salt additions on two plant species. Journal of Environmental Management, 129: 62–68.
Uzoma, K.C., Inoue, M, Andry, H., Fujimaki, H., Zahoor, A. and Nishihara, E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Management. 27:205-212.
Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L. Castaldi, S., Fornasier, F. and Miglietta, F. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34: 231–238.
Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A. and Chan, K.Y. 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. P. 227–249. In J. Lehmann and S. Joseph (ed.) Biochar for Environmental Management. Earthscan. London.405 pp.
Vaux, H.J. and Pruitt, W.O. 1983. Crop-water production functions. P. 61-93. In D. Hillel (ed.) Advances in Irrigation. Academic Press. New York. 336p.
Wong, V.N.L. Dalal, R.C. and Greene, R.S.B. 2009. Carbon dynamics of sodic and saline soil following gypsum and organic material additions: laboratory incubation. Applied Soil Ecology 41: 29–40.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H. and Chen, Y. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy, 47: 268–276.
Yuan, J. Xu, R. and Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102: 3488-3497.
Zhang, H., Xiao, R., Jin, B., Shen, D., Chen, R. and Xiao G. 2013. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts. Bioresource Technology 137: 82–8.