بررسی اثر MTBE (متیل ترشیاری بوتیل اتر) روی ساختار هموگلوبین خون موش نر نژاد ویستار
محورهای موضوعی : پاتوبیولوژی مقایسه ای
1 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اسپکتروسکوپی UV, متیل ترشیاری بوتیل اتر, هموگلوبین, طیفسنجی CD,
چکیده مقاله :
مطالعه تأثیر آلاینده های زیستی با مولکول های پروتئینی از سال های گذشته مورد توجه بوده است. از جمله آلایندههایی که اخیراً مورد توجه محققان علوم زیستی قرار گرفته استMTBE (متیل ترشیاری بوتیل اتر) می باشد. این ماده سبب افزایش کارایی بنزین میگردد. MTBE میتواند در طبیعت حضور داشته و به جریان خون وارد شود.با توجه به شباهت ساختاری هموگلوبین انسان و موش در این مطالعه تاثیر MTBE بر روی هموگلوبین موش به شکل invivo مورد بررسی قرار گرفته است. 3 غلظت از MTBE (200، 400 و 800 میلیگرم بر کیلوگرم وزن بدن) به موش های تحت تیمار به صورت خوراکی منتقل شد. مطالعات اسپکتروسکوپی UV در منطقه 280 نانومتر حاکی از فشردگی و پیچیدهتر شدن بیشتر هموگلوبین های موش های تحت تیمار با MTBE نسبت به نمونه نرمال است. مطالعات اسپکتروسکوپی CD جهت بررسی ساختار دوم هموگلوبین تحت تاثیر MTBE انجام گردید. مطالعه حاضر تغییرات قابل ملاحظه ای در ساختار دوم را اثبات نمی کند. با توجه به بررسیهای انجام شده میتوان فشردگی بیشتر ساختار هموگلوبین در حضور غلظتهای مختلف MTBE را عنوان کرد.
مطالعه تأثیر آلایندههای زیستی با مولکولهای پروتئینی از سالهای گذشته مورد توجه بوده است. از جمله آلایندههایی که اخیراً مورد توجه محققان علوم زیستی قرار گرفته استMTBE (متیل ترشیاری بوتیل اتر) میباشد. این ماده سبب افزایش کارایی بنزین میگردد. MTBE میتواند در طبیعت حضور داشته و به جریان خون وارد شود.با توجه به شباهت ساختاری هموگلوبین انسان و موش در این مطالعه تاثیر MTBE بر روی هموگلوبین موش به شکل invivo مورد بررسی قرار گرفته است. 3 غلظت از MTBE (200، 400 و 800 میلیگرم بر کیلوگرم وزن بدن) به موشهای تحت تیمار به صورت خوراکی منتقل شد. مطالعات اسپکتروسکوپی UV در منطقه 280 نانومتر حاکی از فشردگی و پیچیدهتر شدن بیشتر هموگلوبینهای موشهای تحت تیمار با MTBE نسبت به نمونه نرمال است. مطالعات اسپکتروسکوپی CD جهت بررسی ساختار دوم هموگلوبین تحت تاثیر MTBE انجام گردید. مطالعه حاضر تغییرات قابل ملاحظه ای در ساختار دوم را اثبات نمی کند. با توجه به بررسیهای انجام شده میتوان فشردگی بیشتر ساختار هموگلوبین در حضور غلظتهای مختلف MTBE را عنوان کرد.
2. Berg, J.M., Tymoczko, J.L., Stryer, L. (2002): Hemoglobin transports oxygen efficiently by binding oxygen cooperatively. In: Biochemistry, 5th edition (Freeman, W.H.): p.122-129.
3. Borghoff, S., Ring, C., Banton, M., Leavens, T. (2016): Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u–globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes. J. Appl. Toxicol.37(5):621-640.
4. Chen, X., Chen, Sh., Liu, J., Wang, J., (2008): Isolation of hemoglobin from human bloodusing solid phase extraction with
5. Dekant, W., Bernauer, U., Rosner, E., Amberg, A. (2001): Biotransformation of MTBE, ETBE, and TAME after inhalation or ingestion in rats and humans. Res. Report (Health Effects Institute). 102:29-71.
6. Ernst, O., Zor, T. (2010): Linearization of the bradford protein assay. J. Vis. Exp. 38. 1918.
7. Huang, X., Wang, Y., Xing, Z., Du, K. (2016): Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx. Sci. Total Environ. 565:698-705.
8. Kang, J.W., Hoffmann M.R. (1998): Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone. Environ. Sci. Technol. 32(20):3194-3199.
9. Nikpay, A., Nikpay, M., Kazemian, H. (2006): Removal of methyl tertiary butyl ether (MTBE) vapour from contaminated air streams using different bacterial culture in biotrickling filters. J. Environ. Health Sci. Eng. 3(2):117-122.
10. Najdegerami, I.H., Maghami, P., Sheikh-Hasani, V., Hosseinzadeh, G., Sheibani, N., Moosavi-Movahedi, A.A. (2017): Antichaperone activity and heme degradation effect of methyl tert-butyl ether (MTBE) on normal and diabetic hemoglobins. J. Mol. Recognit. 30(5):1-17.
11. Prah, J.D., Goldstein, G.M., Devlin, R., Otto, D., Ashley, D., House, D., Cohen, K.L., Gerrity, T. (1994): Sensory, symptomatic, inflammatory, and ocular responses to and the metabolism of methyl tertiary butyl ether in a controlled human exposure experiment. Inhal. Toxicol. 6(6):521-538.
12.Schifter, I., Dfaz, L., Avalos, S., Vera, M., Barrera, A., López-Salinas, E. (2011): Effect of methyl tertiary butyl ether concentrations on exhaust emissions from gasoline used in the metropolitan area of Mexico City. J. Air Waste Manag. Assoc. 1:2162-2906.
13. Salehi, N., Moosavi-Movahedi, A.A., Fotouhi, L., Yousefinejad, S., Shourian, M., Hosseinzadeh, R., Sheibani, N., Habibi-Rezaei, M. (2014): Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin withPhotobiol. B 133:11-17.
14. Valipour, M., Maghami, P., Habibi-Rezaei, M., Sadeghpour, M., AliKhademian, M., Mosavi, K., Ahmad, F., Moosavi-Movahedi, A.A. (2017): Counteraction of the deleterious effects of reactive oxygen species on hemoglobin structure and function by ellagic acid. J. Lumin.182:1-7.
15. Yuan, Y., Wang, W.H., Sun, H.F., Du, H.F., Xu, L.H., Liu, Y.F., Ding, X.F., Fu, D.P., Liu, K.X. (2007): Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. Environ. Toxicol. 22(6):630-635.
16. Zor, T., Selinger, Z. (1996): Linearization of the bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 236(2):302-308.
_||_
2. Berg, J.M., Tymoczko, J.L., Stryer, L. (2002): Hemoglobin transports oxygen efficiently by binding oxygen cooperatively. In: Biochemistry, 5th edition (Freeman, W.H.): p.122-129.
3. Borghoff, S., Ring, C., Banton, M., Leavens, T. (2016): Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u–globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes. J. Appl. Toxicol.37(5):621-640.
4. Chen, X., Chen, Sh., Liu, J., Wang, J., (2008): Isolation of hemoglobin from human bloodusing solid phase extraction with
5. Dekant, W., Bernauer, U., Rosner, E., Amberg, A. (2001): Biotransformation of MTBE, ETBE, and TAME after inhalation or ingestion in rats and humans. Res. Report (Health Effects Institute). 102:29-71.
6. Ernst, O., Zor, T. (2010): Linearization of the bradford protein assay. J. Vis. Exp. 38. 1918.
7. Huang, X., Wang, Y., Xing, Z., Du, K. (2016): Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx. Sci. Total Environ. 565:698-705.
8. Kang, J.W., Hoffmann M.R. (1998): Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone. Environ. Sci. Technol. 32(20):3194-3199.
9. Nikpay, A., Nikpay, M., Kazemian, H. (2006): Removal of methyl tertiary butyl ether (MTBE) vapour from contaminated air streams using different bacterial culture in biotrickling filters. J. Environ. Health Sci. Eng. 3(2):117-122.
10. Najdegerami, I.H., Maghami, P., Sheikh-Hasani, V., Hosseinzadeh, G., Sheibani, N., Moosavi-Movahedi, A.A. (2017): Antichaperone activity and heme degradation effect of methyl tert-butyl ether (MTBE) on normal and diabetic hemoglobins. J. Mol. Recognit. 30(5):1-17.
11. Prah, J.D., Goldstein, G.M., Devlin, R., Otto, D., Ashley, D., House, D., Cohen, K.L., Gerrity, T. (1994): Sensory, symptomatic, inflammatory, and ocular responses to and the metabolism of methyl tertiary butyl ether in a controlled human exposure experiment. Inhal. Toxicol. 6(6):521-538.
12.Schifter, I., Dfaz, L., Avalos, S., Vera, M., Barrera, A., López-Salinas, E. (2011): Effect of methyl tertiary butyl ether concentrations on exhaust emissions from gasoline used in the metropolitan area of Mexico City. J. Air Waste Manag. Assoc. 1:2162-2906.
13. Salehi, N., Moosavi-Movahedi, A.A., Fotouhi, L., Yousefinejad, S., Shourian, M., Hosseinzadeh, R., Sheibani, N., Habibi-Rezaei, M. (2014): Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin withPhotobiol. B 133:11-17.
14. Valipour, M., Maghami, P., Habibi-Rezaei, M., Sadeghpour, M., AliKhademian, M., Mosavi, K., Ahmad, F., Moosavi-Movahedi, A.A. (2017): Counteraction of the deleterious effects of reactive oxygen species on hemoglobin structure and function by ellagic acid. J. Lumin.182:1-7.
15. Yuan, Y., Wang, W.H., Sun, H.F., Du, H.F., Xu, L.H., Liu, Y.F., Ding, X.F., Fu, D.P., Liu, K.X. (2007): Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. Environ. Toxicol. 22(6):630-635.
16. Zor, T., Selinger, Z. (1996): Linearization of the bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 236(2):302-308.