تدوین مدل کشف تقلب با استفاده از رویکرد ترکیبی برپایه مدل تحلیل عاملی و روش شبکه عصبی مصنوعی در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
محورهای موضوعی : حسابداری مدیریتجابر محمدموسایی 1 , بابک جمشیدی نوید 2 , مهرداد قنبری 3 , فرشید خیراللهی 4
1 - دانشجوی دکتری حسابداری، گروه حسابداری، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
2 - استادیار، گروه حسابداری، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
3 - استادیار، گروه حسابداری، واحد کرمانشاه، دانشگاه آزاد اسلامی، کزمانشاه، ایران.
4 - استادیار، گروه حسابداری، دانشگاه رازی، کرمانشاه، ایران.
کلید واژه: تقلب, گزارشگری مالی متقلبانه, شبکه عصبی مصنوعی, تحلیل عاملی تائیدی, تحلیل مولفههای اصلی,
چکیده مقاله :
هدف اصلی این پژوهش ارائه مدلی برای کشف تقلب با استفاده از رویکرد ترکیبی مدل تحلیل عاملی و روش شبکه عصبی مصنوعی از نوع شبکه عصبی پیش خور با الگوریتم پس انتشار خطا است. شبکهای که برای پیشبینی تقلب مالی شرکتها استفاده میشود دارای 17 نرون (مجموعه نسبتهای مالی انتخاب شده) در لایه ورودی و 1 نرون (وضعیت تقلب شرکتها) در لایه خروجی است. تابع تبدیل مورد استفاده در لایه خروجی از نوع خطی و برای لایه میانی یک تابع غیر خطی سیگمویدی انتخاب شده است. جامعه آماری پژوهش، شرکت های پذیرفته شده دربورس اوراق بهادار تهران دربازه زمانی1392-1393 می باشد که 140 شرکت به عنوان نمونه در پژوهش حاضر استفاده شده است . برای دسته بندی شرکت ها با احتمال گزارشگری متقلبانه وغیر متقلبانه از مدل نمرهM بنیش استفاده شده است که 78 شرکت دارای احتمال گزارشگری متقلبانه و62 شرکت دارای احتمال گزارشگری غیرمتقلبانه بوده است. برای انتخاب نهایی متغیر های ورودی درشبکه عصبی مصنوعی ازمدل تحلیل عاملی تائیدی و تحلیل مولفههای اصلی استفاده شده است. نتایج نشان داد که ساختار گزارش شده مدل شبکه عصبی که دارای 7 نرون در لایه پنهان است از دقت و عملکرد بالاتری نسبت به سایر ساختارهای بررسی شده بوده است. نتایج حاکی است که دقت دسته بندی شرکت های متقلب و شرکت های غیرمتقلب وعملکرد کلی در روش شبکه عصبی مصنوعی به ترتیب57.69 %و72.73 % و62.16 % بوده است.
The main purpose of this research is to propose a fraud detection model using an integrated approach based on the factor analysis model and the artificial neural network method. The network used to predict corporate financial fraud has 17 neurons (selected financial ratios) in the input layer and 1 neuron (corporate fraud status) in the output layer. The conversion function used in the output layer is linear and for the middle layer a non-linear sigmoid function is selected. The neural network used in this research is a feed forward neural network with back propagation algorithm. The statistical population of this study is comprised of the companies listed in Tehran Stock Exchange in the time interval from1392 to 1393. Out of these companies, 140 have been selected as the research sample. The Beneish M-Score model has been used in order to classify the companies with the likelihood of fraudulent and non-fraudulent reporting. According to the Beneish M-Score Model, 78 companies were fraudulent in terms of their reports and 62 were non-fraudulent. For the final selection of the input variables (financial ratios) in the artificial neural network, the confirmatory factor analysis model and the principal component analysis model have been used. The results obtained from the aforementioned models have shown that the reported structure of the neural network model has 7 hidden layer neurons and the momentum learning algorithm has been used for training the network. This algorithm was more precise and functioned better than other reviewed structures. Therefore, it was selected as the final adjustment of the neural network.. The obtained results indicated that the artificial neural network method had a higher performance in this regard; in that the precision of classification of fraudulent and non-fraudulent firms and the overall performance of the artificial neural network method was57and 69%,72,73%,61,62% respectively.
* آیسک، مهرداد(1391)؛" کاوش دادهها برای کشف تقلب"،مجله حسابرس، شماره60، صص12-2.
* اطهمی،کریم؛ خواجوی،حسین (1390)؛ "پیدایش و پیشرفت حسابرسی تقلب"، مجله حسابدار، شماره 235 ،صص 68 تا 71.
* اعتمادی، حسین؛ زلقی، حسن(1392)؛ "کاربرد رگرسیون لجستیک در شناسایی گزارشگرهای مالی متقلبانه"، شماره 51، صص 163-145.
* امینی، پیمان؛ محمدی، کامران؛ عباسی، شعیب(1390)؛"بررسی عوامل موثر بر صدور گزارش مشروط : کاربرد روش شبکه عصبی"، فصلنامه علمی پژوهشی حسابداری مدیریت، شماره11، صص39-25.
* خواجوی، شکراله ؛ ابراهیمی، مهرداد(1396)؛" مدلسازی متغیرهای اثرگذار برکشف تقلب در صورتهای مالی با استفاده از تکنیکهای دادهکاوی "، فصلنامه حسابداری مالی، شماره23، صص50-23
* دستگیر، محسن؛ شفیعی سردست، مرتضی(1390)؛ "فناوری داده کاوی، رویکردی نوین در حوزه مالی"، دانش حسابرسی، شماره 5، صص 27-6.
* رشیدی باغی، محسن(1392)؛ "تغییر مسئولیت حسابرسان درارتباط باکشف تقلب"، مجله حسابرس، شماره 67 ، صص127-118.
* سبحانی فرد، یاسر؛ اخوان، مریم(1391)؛ "تحلیل عاملی، مدلسازی معادلات ساختاری و چند سطحی"، انتشارات دانشگاه امام صادق.
* سجادی، حسین؛ کاظمی، توحید (1395)؛ "الگوی جامع گزارشگری مالی متقلبانه در ایران به روش نظریهپردازی زمینه بنیان"، مجله پژوهشهای تجربی حسابداری، شماره 21،صص 204-185.
* صفرزاده، محمدحسین(1389)؛ "توانایی نسبتهای مالی در کشف تقلب در گزارشگری مالی: تحلیل لاجیت"، مجله دانش حسابداری، شماره 1. صص 163-137.
* فروغی، داریوش؛ خالقی، محسن؛ رسائیان، امیر (1391)؛ "مفهوم اهمیت در حسابرسی صور تهای مالی و تأثیر آن بر توجه حسابرسان درفرآیند کشف تقلب مدیران"، مجله پیشرفتهای حسابداری دانشگاه شیراز، شمارهی اول، صص135 – 111.
* کمیته تدوین استانداردهای حسابرسی(1391 )؛ استانداردهای حسابرسی، تهران: سازمان حسابرسی.
* کمیجانی، اکبر؛ سعادت، جواد(1385)؛ "کاربرد مدلهای شبکه عصبی درپیشبینی ورشکستگی اقتصادی شرکتهای پذیرفته شده دربورس اوراق بهادار تهران"، مجله جستارهای اقتصادی، شماره ششم، صص43-11.
* مرادی، جواد؛ رستمی، راحله؛ زارع، رضا(1393)؛ "شناسایی عوامل خطر مؤثر بر احتمال وقوع تقلب در گزارشگری مالی از دید حسابرسان و بررسی تأثیر آنها بر عملکرد مالی شرکت"، مجله پیشرفتهای حسابداری دانشگاه شیراز. شماره اول، صص173-141.
* AICPA (1997), Consideration of Fraud in a Financial Statement Audit, Statement on Auditing Standards No. 82, American Institute of Certified Public Accountants,New York, NY
* AICPA(2005),Consideration of Fraud in a Financial Statement Audit SAS No. 99; SAS No. 113, , American Institute of Certified Public Accountants,New York, NY
* Basheer, I. A.; Hajmeer, M. 2000. "Artificial neural networks: fundamentals, computing, design and application". Journal of Microbiological Methods, 43, 3-31
* Beasley, S.M., Carcello, J.V. and Hermanson, D.R.(1999), Fraudulent Financial Reporting: 1987-1997: An Analysis of US Public Companies,Research Report, COSO.
* Beneish, M.D. (1999), ``Incentives and penalties related to earnings overstatements that violate GAAP’’, The Accounting Review, Vol. 74 No. 4, pp. 425-57.
* Chen, H. J., Huang, S. Y., & Kuo, C. L. (2009). Using the artificial neural network to predict fraud litigation: Some empirical evidence from emerging markets. Expert Systems with Applications, 36(2), 1478-1484.
* Chen, W. S., & Du, Y. K. (2009). Using neural networks and data mining techniques for thefinancial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086.
* Chye Koh, H., & Kee Low, C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
* Costello J.L., The Auditor’s Responsibilities for Fraud Detection and Disclosure: Do the Auditing Standards Provide a Safe Harbor?, Maine Law Review43, 1991, 265-305
* Fanning, K. M., & Cogger, K. O. (1998). Neural network detection of management fraud using published financial data. International Journal of Intelligent Systems in Accounting, Finance & Management, 7(1), 21-41.
* Kirkos, E., Spathis, C., & Manolopoulos, Y. (2005, April). Detection of fraudulent financial statements through the use of data mining techniques. InProceedings of the 2nd International Conference on Enterprise Systems and Accounting, Thessaloniki, Greece (pp. 310-325).
* Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995-1003.
* Lei, J. Z., & Ghorbani, A. A. (2012). Improved competitive learning neural networks for network intrusion and fraud detection. Neurocomputing, 75(1), 135-145.
* -Loebbecke, J., Eining, M. and Willingham, J (1989) , ``Auditor’s experience with material irregularities: frequency, nature, and detectability’’, Auditing: A Journal of and Theory, Vol. 9, pp. 1-28.
* Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559-569.
* Ofori, Edmond .(2016).Detecting Corporate Financial Fraud Using Modified AltmanZ-Score and Beneish M-Score. The Case of Enron Corp. Research Journal of Finance and Accounting. Vol.7, No.4
* Phua,C., Lee,V., Kate Smith,K.,Gayler,R.(2010). Publisher: Leee. Inspec Accession Number: 11472129
* -Sharma, A., & Panigrahi, P. K. (2013). A review of financial accounting fraud detection based on data mining techniques. arXiv preprint arXiv:1309.3944.
* Stice, J. (1991) , ``Using financial and market information to identify pre-engagement market factors associated with lawsuits against auditors’’, The Accounting Review, Vol. 66 No. 3, pp. 516-33.
* Veri, H. F. T. T., &Kullanimi, M. T. (2009). The use of data mining techniques in detecting fraudulent financial statements: an application on manufacturing firms.
* Zhong Leia , John . Ghorbani , Ali (2013).mproved competitive learning neural networks for network intrusion and fraud detection. Journal of Neurocomputing 7 (2013) 135-145
* Zimbelman, M.F. (1997), ``The effects of SAS No. 82 ,on auditors attention to fraud risk-factors and audit planning decisions’’, Journal of Accounting Research, Vol. 35 No. 5, pp. 75-79.
_||_