روشهای مجموعه های راف و الگوریتم های ژنتیک در سیستم ترکیبی هوشمند خرید و فروش برای کشف قوانین خرید و فروش بازارهای آتی
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارمحمدرضا وطن پرست 1 , عباس بابایی 2 , شعبان محمدی 3
1 - استادیار گروه حسابداری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
2 - دانشجوی دکتری مهندسی مالی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
3 - کارشناسی ارشد حسابداری، دانشکده شهید رجایی، دانشگاه فنی و حرفه ای استان خراسان، ایران
کلید واژه: سیستم خرید و فروش ترکیبی هوشمن, تحلیل تکنیکال, مجموعههای راف, الگوریتم ژنتیک,
چکیده مقاله :
کشف قوانین هوشمند خرید و فروش تکنیکال از داده های پیچیده و غیرخطی بازار سهام و متعاقب آن توسعه سیستم های تصمیم یا خرید و فروش کار دشواری است. هدف پژوهش حاضر توسعه سیستم ترکیبی هوشمند خرید و فروش جهت کشف قوانین خرید و فروش تکنیکال از طریق تحلیل مجموعه راف و الگوریتم ژنتیک است. مجموعه داده های مورد استفاده شامل 30 دقیقه باز، بالا، پائین، بسته و حجم قراردادهای آتی شاخص مرکب قیمت گذاری سهام بورس اوراق بهادار در بازه زمانی1390تا 1396بود. به این منظور توصیه می گردد هنگام کشف قوانین خرید و فروش تکنیکال برای بازارهای آینده و حل مسائل بهینه سازی، گسسته سازی و کاهش داده ها، تحلیل مجموعه راف و در نهایت برای اتخاذ تصمیمات بهینه خرید و فروش رویکرد الگوریتم ژنتیک مورد استفاده قرار گیرد. برای آزمودن مدل پیشنهادی و مقایسه آن با رویکردهای متناظر، تصادفی، همبستگی و رویکردهای الگوریتم ژنتیک مداخلاتی طراحی شد. همچنین، این مداخلات جامع، بسیاری از موضوعات سیستم خرید و فروش موجود، کاربرد روش پنجره لغزان، تعداد قوانین خرید و فروش و مدت دوره آموزشی را در برداشت. برای ارزیابی سیستم ترکیبی هوشمند مداخلاتی روی داده های تاریخی شاخص مرکب قیمت گذاری سهام بورس اوراق بهادار تهران انجام شد. به طور خاص، تحلیل عملکرد خرید و فروش بر طبق مجموعه های مقرات تصمیم و حجم دوره آموزش برای کشف قوانین خرید و فروش دوره آزمون انجام شد. یافته ها نشان داد مدل پیشنهادی در مقایسه با مدل معیار از نظر میانگین بازدهی و مقیاس ریسک تعدیل شده عملکرد بهتری داشته است.
The discovery of intelligent technical sales rules from the complex and making systems for buying and selling is a difficult task. The purpose of this study is to develop an intelligent mixing system for buying and selling to discover the rules of technical sales through the analysis of the Rough series and the genetic algorithm. The datasets used included 30 open, up, down, closing and volume futures contracts of stock indexes in the stock market in the period from 2011 to 2017. For this purpose, it is recommended that when discovering technical rules for future markets and solving optimization problems, discretization and data reduction, analyzing the Ruff series, and ultimately, for making optimal decisions about buying and selling the approach of the genetic algorithm. To test the proposed model and compare it with corresponding approaches, randomizations, correlations and approaches to genetic algorithm interventions were designed. Also, these comprehensive interventions, many issues of the existing buying and selling system, the use of slider windows, the number of sales laws, and the duration of the training course. In order to evaluate the intelligent mixing system, interventions were carried out on historical data of the stock index of Tehran Stock Exchange. Specifically, the analysis of sales performance was performed according to decision sets and volumes of training courses to discover the rules for buying and selling the test period. The results showed that the proposed model had better performance in terms of average returns and adjusted risk scale compared to the benchmark model.
* باتمیز،آیدا ؛ فرانک حسین زاده سلجوقی؛ علی اکبر ثانوی. (1395). روشی جدید در تعیین ورشکستگی با استفاده از تحلیل پوششی داده ها و تئوری مجموعه های راف فازی،مجله مدل سازی پیشرفته ریاضی، مقاله 1، دوره 6، شماره 1، صفحه 1-22.
* عباسی ،فاطمه ؛ اکبر عالم تبریز (1396). انتخاب مکان احداث شعب بانک با رویکرد تئوری مجموعههای راف- برنامهریزی آرمانی چند انتخابه،پژوهش های نوین در تصمیم گیری، مقاله 6، دوره 2، شماره 1، بهار 1396، صفحه 119-148.
* میرزائی،الهه؛ منصور اسماعیل پور. (1394). ارائه روشی ترکیبی برای افزایش دقت پیشبینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی،فصلنامهپردازش علائم و دادهها، دوره ۱۴، شماره ۳،صفحات ۵۱-۶۴.
* Allen, F., Karjalainen, R., 1999. Using genetic algorithms to find technical trading rules. J.Financ. Econ. 51, 245-271.
* Bemires, S.D., 2010. Fuzzy adaptive decision-making for boundedly rational trader’s inspeculative stock markets. Eur. J. Oper. Res. 202(1), 285–293.
* Boyacioglu, M.A., Avci, D., 2010. An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst. Appl. 37, 7908-7912.
* Chavarnakul, T., Enke, D., 2009. A hybrid stock trading system for intelligent technicalanalysis-based equivolume charting. Neurocomputing. 72, 3517-3528.
* Chen, Y.-S., Cheng, C.-H., Chiu, C.-L., Huang, S.-T., 2016. A study of ANFIS-based multifactor time series models for forecasting stock index. Appl. Intell. DOI 10.1007/s10489-016-0760-8.
* Chen, Y., Mabu, S., Shimada, K., Hirasawa, K., 2009. A genetic network programming with learning approach for enhanced stock trading model. Expert Syst. Appl. 36, 12537-12546.
* Chiang, W.C., Enke, D., Wu, T., Wang, R., 2016. An adaptive stock index trading decision support system. Expert Syst. Appl. 59, 195-207.
* Dempster, M.A.H., Jones, C. M., 2001. A real-time adaptive trading system using genetic programming. Quant. Financ. 1, 397-413.
* Esfahanipour, A., Mousavi, S., 2011. A genetic programming model to generate risk adjusted technical trading rules in stock markets. Expert Syst. Appl. 38, 8438-8445.
* Hsu, Y., Chen, A., Chang, J., 2011. An inter-market arbitrage trading system based on extended classifier systems. Expert Syst. Appl. 38(4), 3784-3792.
* Hu, J., Pedrycz, W., Wang, G., Wang, K., 2016. Rough sets in distributed decision information systems. Knowl. Based Syst. 94, 13-22.
* Hu, Y., Feng, B., Zhang, X., Ngai, E.W.T., Ngai, M., 2015a. Stock trading rule discovery with an evolutionary trend following model. Expert Syst. Appl. 42, 212-222.
* Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E.W.T., Liu, M., 2015b. Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Appl. Soft Comput. 36, 534-551.
* Jia, X., Shang, L., Zhou, B., Yao, Y., 2016. Generalized attribute reduct in rough set theory. Knowl. Based Syst. 91, 204-218.
* Jing, Y., Li, T., Luo, C., Horng, S.-J., Wang, G., Yu, Z., 2016. An incremental approach for attribute reduction based on knowledge granularity. Knowl. Based Syst. 104, 24-38.
* Kim, K.-j., Ahn, H., 2012. Simultaneous optimization of artificial neural networks for financial forecasting. Appl. Intell. 36, 887-898.
* Kim, K., Han, I., 2000. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 19(2), 125-132.
* Kim, Y., Enke, D., 2016. Developing a rule change trading system for the futures market using rough set analysis. Expert Syst. Appl. 59, 165-173.
* Kotsiantis, S., Kanellopoulos, D., 2006. Discretization techniques: A recent survey.GESTS Int. Trans. Comput. Sci. Eng. 32(1), 47-58.
* Lai R.K., Fan C., Huang W., Chang P., 2009. Evolving and clustering fuzzy decision tree for financial time series data forecasting. Expert Syst. Appl. 36, 3761-3773.
* Lee, S. J., Ahn, J. J., Oh, K. J., Kim, T. Y., 2010. Using rough set to support investment strategies of real-time trading in futures market. Appl. Intell. 32, 364-77.34.
* Lee, S. J., Oh, K. J., Kim, T. Y., 2012. How many reference patterns can improve profitability for real-time trading in futures market? Expert Syst. Appl. 39, 7458-7470.
* Luo, C., Li, T., Yi, Z., Fujita, H., 2016. Matrix approach to decision-theoretic rough sets for evolving data. Knowl. Based Syst. 99, 123-134.
* Mabu, S., Hirasawa, K., Obayashi, M., Kuremoto, T., 2013. Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals. Expert Syst. Appl. 40, 6311-6320.
* Mehdiyev, N., Enke, D., 2014. Interest rate prediction: A neuro-hybrid approach with data preprocessing. Int. J. Gen. Sys. 43(5), 535-550.
* Menkhoff, L., 2010. The use of technical analysis by fund managers: International evidence. J. Bank. Financ. 34(11), 2573-2586.
* Moshkov M.J., Piliszczuk M., Zielosko B., 2008. Partial covers, decree and decision rules in rough sets – Theory and applications. Studies Comput. Intell. 145, Springer.
* Mousavi, S., Esfahanipour, A., Zarandi, M. H. F., 2014. A novel approach to dynamic portfolio trading system using multitree generic programming. Knowl. Based Syst. 66, 68-81.
* Nguyen H.S., Skowron A., 1995. Quantization of real values attributes rough set and Boolean reasoning approach. Proc. 2nd Joint Annual Conf. Inf. Sci., Wrightsville Beach,NC, 1995, 34-37.
* Oh, K. J., Kim, T. Y., Min, S. –H., Lee, H. Y., 2006. Portfolio algorithm based on portfolio beta using generic algorithm. Expert Syst. Appl. 30, 527-534.
* Ozturk, M., Toroslu, I. H., Fidan, G., 2016. Heuristic based trading system on Forex data using technical indicator rules. Appl. Soft Comput. 43, 170-186.
* Pardo, R., 2008. The evaluation and optimization of trading strategies. Wiley.
* Pawlak, Z., 1982. Rough sets. Int. J. Comput. Inf. Sci. 11, 341-356.35
* Pawlak, Z., 2002. Rough sets and intelligent data analysis. Inf. Sci. 147, 1-12.
* Pawlak, Z., Grzymala-Busse, J., Sloinski, R., Ziarko, W., 1997. Rough set. Commun.ACM. 38(11), 88-95.
* Sharpe, W.F., 1994. The Sharpe ratio. J. Portfolio Manage. 21, 49-58.
* Shen, L., Loh, H. T., 2004. Applying rough sets to market timing decisions. Decis.Support Syst. 37, 583-597.
* Wang, F., Yu, P. L.H., Cheung, D. W., 2014. Combining technical trading rules using particle swarm optimization. Expert Syst. Appl. 41, 3016-3026.
* Wiles, P.S., Enke, D., 2015. A hybrid neuro-fuzzy model to forecast the soybean complex. Proceedings of the 2015 American Society of Engineering Management conference, Indianapolis, IN, October.
* Wiles, P.S., Enke, D., 2015. Optimizing MACD parameters via genetic algorithms for soybean futures. Procedia Comput. Sci. 61, 85-91.
* Yao, J., Herbert, J.P., 2009. Financial time-series analysis with rough sets. Appl. Soft Comput. 9, 1000-1007.
* Zhang, X., Y. Hu, K. Xie, W. Zhang, L. Su, Liu, M., 2015. An evolutionary trend reversion model for stock trading rule discovery. Knowl. Based Syst. 79, 27 35.
* Zhong, N., Dong, J., 2001. Using rough sets with heuristics for feature selection. J.Intell. Inf. Syst. 16, 199-214
_||_