پیش بینی تلاطم بازده سهام در بورس اوراق بهادار تهران با استفاده از روش شبیهسازی MCMC و الگوریتم متروپلیس هستینگ
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارشهرام فتاحی 1 , آزاد خانزادی 2 , مریم نفیسی مقدم 3
1 - دانشیار دانشگاه رازی، دانشکده ی علوم اجتماعی، مدیر گروه اقتصاد
2 - استادیار دانشگاه رازی، دانشکدهی علوم اجتماعی، گروه اقتصاد
3 - دانشجوی دکترای دانشگاه تبریز. دانشگاه تبریز، دانشکده اقتصاد
کلید واژه: تلاطم, بورس اوراق بهادار تهران, روشهای بیزی و حداکثر راستنمای, الگوریتم متروپلیس هستینگ, الگوریتم MCMC,
چکیده مقاله :
سرمایه گذاری های بازار سهام همواره دارای ریسک بوده است زیرا بازده سهام دارای تلاطم است. تحقیقاتی که تاکنون در رابطه با مدلسازی وپیش بینی تلاطم بازار سهام صورت گرفته عمدتاً با استفاده از روش حداکثر راستنمایی بوده و توجه کمی به روش تخمین بیزی صورت گرفته است. این مقاله پارامترهای مدلGARCH را با استفاده از روش بیزی و تکنیک شبیه سازی MCMC تخمین می زند و سپس نتایج بدست آمده را با روش حداکثر راستنمایی مقایسه می کند. برای این منظور از شاخص بورس اوراق بهادار تهران در بازه ی 7/01/1378 تا 31/01/1393 استفاده شده است.نتایج تحقیق نشان میدهد که در نمونه های کوچک روش حداکثر راستنمایی کارایی کمتری نسبت به روش بیزی دارد اما همانطور که حجم نمونه افزایش می یابد کارایی و دقت پیش بینی در هردو روش همگرا می شود، به طوریکه تابع توزیع پارامترها در نمونههای کوچک به صورت مجانبی نامتقارن است و با افزایش تعداد داده ها به سمت توزیع مجانبی متقارن میل می کند.در پایان، نتایج پیش بینی نوسانات تایید کننده ی ادعای فوق است.
Stock market investments always have been risky because stock returns are volatile. The studies have ever been done on modeling and forecasting stock market volatility has mainly applied the maximum likelihood method and little attention has been paid to the Bayesian estimation method. The reason was that it was assumed that the maximum likelihood method does the best fitting with small volumes of samples. This study tries to estimate GARCH model parameters using Bayesian approach and MCMC algorithm to compare it with maximum likelihood alternative using the daily TEPIX index of Tehran Stock Exchange over the period April 6, 1999 April 20, 2014. For this purpose, the data is divided into three subsamples. The results indicates that; in small samples; the maximum likelihood method is less efficient than Bayesian method but as the sample size increases the efficiency and forecasting accuracy converge in both methods so that distribution function of the parameters is asymptotically asymmetric in small samples and converges to symmetric asymptotic distribution as the sample size increases.
* کشاورزحداد، غلامعلی و بابایی، آرش(1387)" بررسی تلاطم بازده سهام در بورس تهران با استفاده از دادههای پانل و مدل GARCH" پایاننامهی کارشناسی ارشد، دانشگاه صنعتی شریف، دانشکدهی مدیریت و اقتصاد.
* نظیفی نایینی، مینو؛ فتاحی، شهرام و صمدی، سعید(1391)." مدلسازی و پیشبینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف"،تحقیقات مدلسازی اقتصادی، سال سوم، شماره9.
* پاکیزه، کامران(1389)." تلاطم و بازده (شواهدی از بورس اوراق بهادار تهران و بورس های بین الملل)"، تحقیقات مدلسازی اقتصادی، دورهی 1، شمارهی 2
* Ardia.D(2006)."Bayesian Estimation of the GARCH(1,1) Model with Normal Innovation". University of Fribourg Switzerland
* Ardia D (2008). "Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications", volume 612 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany. ISBN 978-3-540-78656-6. doi:10.1007/978-3-540-78657-3.
* Ardia D, Hoogerheide LF, van Dijk HK (2008). ‘AdMit’: Adaptive Mixture of Studentt Distributions for Efficient Simulation in R. URL http://CRAN.R-project.org/ package=AdMit.
* Ardia D, Hoogerheide LF (2009). "Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R" MPRA working paper. URL http://mpra.ub. uni-muenchen.de/17414/.
* Ardia D, Hoogerheide LF, van Dijk HK (2009). "Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit" Journal of Statistical Software, 29(3), 1–32. URL http://www. jstatsoft.org/v29/i03/.
* Ausin MC, Galeano P (2007). "Bayesian Estimation of the Gaussian Mixture GARCH Model." Computational Statistics & Data Analysis, 51(5), 2636–2652. doi:10.1016/ j.csda.2006.01.006.
* Bollerslev T, Chou RY, Kroner K (1992). "ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence." Journal of Econometrics, 52(1–2), 5–59. doi:10.1016/0304-4076(92)90064-X.
* Engle RF (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica, 50(4), 987–1008
* Gelfand, A.E and Smith, A.F.M(1990)" Sampling - Based approaches to calculating marginal density", Journal of the American Statistical Associated, 85, 398-409
* Geman, S. and Geman, D.(1984), " Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images", Institute of electrical and electronics engineers
* Geweke JF (1989). "Bayesian Inference in Econometric Models Using Monte Carlo Integration" Econometrica, 57(6), 1317–1339. Reprinted in: Bayesian Inference, G. C. Box and N. Polson (Eds.), Edward Elgar Publishing,.
* Green. William H." Econometrics Analysis" seventh edition, New York University
* Lee SW, Hansen BE (1994). "Asymptotic Theory for the GARCH(1,1) Quasi Maximum Likelihood Estimator." Econometric Theory, 10(1), 29–52.
* Smith, A.F.M and Robert, G.O.(1993) "Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo method (with discussion)", Journal of Royal Statistical society, Series B, 55, 3-23
* TeruoNakatsuma,(1998) "A markov- chain sampling algorithm for GARCH models. Studies in Nonlinear Dynamics and Econometrics", 3(2):107–117