پیشبینی ارزش در معرض ریسک وریزش موردانتظار؛ رویکرد مدلسازی دادههای پرتناوب
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارسید بابک ابراهیمی 1 , نگین محبی 2
1 - عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی
2 - دانشجوی کارشناسی ارشد مهندسی مالی،دانشگاه صنعتی خواجهنصیرالدین طوسی
کلید واژه: ارزش در معرض خطر, ریزش موردانتظار, حافظه بلندمدت, GARCH,
چکیده مقاله :
این پژوهش به بررسی عملکرد مدلهای حافظه بلندمدت و مدلهای حافظه کوتاهمدت در پیشبینی چنددورهای ارزش در معرض ریسک (VaR) و ریزش موردانتظار (ES)میپردازد. دادههای مورد مطالعه مربوط به سه شاخص صنعت محصولات شیمیایی، خودرو و ساخت قطعات و فلزات اساسی میباشد که در بازه زمانی خرداد 1390 تا خرداد 1394 به صورت روزانه جمعآوری شده است. نتایج حاصل نشان میدهد که مدلهای مبتنی بر واریانس ناهمسانی مشروط که ویژگی حافظه بلندمدت را مدنظر قرار دادهاند، در دورههای زمانی مورد مطالعه بهبودی را در زمینه دقت پیش بینی VaR ایجاد ننمودهاند. علاوه بر این، مدل GARCH در اغلب شاخصهای در نظرگرفته شده در دورههای زمانی مورد مطالعه عملکرد بهتری داشته و دارای تابع زیان کوچکتری بین بازدههای واقعی و برآورد ES بوده است. بنابراین مدل تلاطم با حافظه بلندمدت علی رغم این که با ساختار داده های پرتناوب انطباق بیشتری دارد در مقایسه با مدل حافظه کوتاهمدت GARCH، در افقهای زمانی کوتاه مدت و بلندمدت، نتوانسته بهبودی را در دقت پیشبینی VaRو ES ایجاد نماید.
The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period value-at-risk and expected shortfall across 3 industry indices in Tehran Stock Exchange such as chemical, vehicle and metals. The dataset is composed of daily data covering the period from May, 2011 to May, 2015. According to the result of this research accounting for fractional integration in the conditional variance model does not appear to improve the accuracy of the VaR forecasts for the 1-day-ahead, 10-day-ahead and 20-day-ahead forecasting horizons relative to the short memory GARCH specification. Furthermore, the GARCH model has a lower quadratic loss between actual returns and ES forecasts, for the majority of the indices considered in 1-day, 10-day and 20-day forecasting horizons. Therefore, a long memory volatility model compared to a short memory GARCH model does not appear to improve the VaR and ES forecasting accuracy, even for longer forecasting horizons.
* اسلامی بیدگلی،غلامرضا و راعی، رضا و کمالزاده، سحر، 1392، محاسبه ارزش در معرض خطر قیمت سبد نفتی اوپک با استفاده از مدلهای حافظه بلندمدت گارچ، فصلنامه مطالعات اقتصاد انرژی، سال دهم، شماره 39، صفحات 1-19.
* خلیلی عراقی، مریم و یکه زارع، امیر، 1389، برآورد ریسک بازار صنایع بورس اوراق بهادار تهران بر مبنای مدل ارزش در معرض خطر (VaR)، مجله دانش مالی تحلیل اوراق بهادار، دوره 3، شماره 7، صفحات 47-72.
* سجاد، رسول و هدایتی، شهره و هدایتی، شراره، 1393، برآورد ارزش در معرض خطر با استفاده از نظریه ارزش فرین در بورس اوراق بهادار تهران، فصلنامه علمی پژوهشی دانش سرمایهگذاری، دوره سوم، شماره نهم، صفحات 133-155.
* شاهمرادی، اصغر و زنگنه، محمد، 1386، محاسبه ارزش در معرض خطر برای شاخصهای عمده بورس اوراق بهادار تهران با استفاده از روش پارامتریک، مجله تحقیقات اقتصادی، دوره 42، شماره 79، صفحات 121-149.
* نریمانی، رضا و حکیمیپور، نادر و رضایی، اسداله، 1392، کاربرد روش شبکه عصبی مصنوعی و مدلهای واریانس ناهمسانی شرطی در محاسبه ارزش در معرض خطر، فصلنامه علوم اقتصادی، سال هفتم، شماره 24، صفحات 101-137.
* Angelidis, T., Benos, A., & Degiannakis, S. (2004). The use of GARCH models in VaR estimation. Statistical Methodology, 1, 105–128.
* Angelidis, T., & Degiannakis, S. (2007). Backtesting VaR models: A two-stage procedure. Journal of Risk Model Validation, 1(2), 1–22.
* Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1997). Thinking coherently. Risk, 10, 68–71.
* Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherentmeasures of risk. Mathematical Finance, 9(3), 203–228.
* Baillie, R., Bollerslev, T., & Mikkelsen, H. (1996). Fractionally integrated generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 74, 3–30.
* Bollerslev, T. (1986). Generalised autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307–327.
* Brooks, C., & Persand, G. (2003). Volatility forecasting for risk management. Journal of Forecasting, 22, 1–22.
* Caporin, M. (2008). Evaluating value-at-risk measures in presence of long memory conditional volatility. Journal of Risk, 10(3), 79–110.
* Chen, Y., & Lu, J. (2010). Value at risk estimation. In J. -C. Duan, J. E. Gentle, &W. Hardle (Eds.), Chapter in handbook of computational finance. Springer, 307-333.
* Christoffersen, P. (2003). Elements of financial risk management. CA: Elsevier Science, 21-121.
* Danielsson, J., & Morimoto, Y. (2000). Forecasting extreme financial risk: A critical analysis of practical methods for the Japanese market. Monetary and Economic Studies, 18(2), 25–48.
* Dionne, G., Duchesne, P., & Pacurar, M. (2009). Intraday value at risk (IVaR) using tick by tick data with application to the Toronto Stock Exchange. Journal of Empirical Finance, 16, 777–792.
* Dowd, K. (2002). Measuring market risk. New York: John Wiley & Sons.
* Ellis, C., & Wilson, P. (2004). Another look at the forecast performance of ARFIMA models. International Review of Financial Analysis, 13, 63–81.
* Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica, 50, 987–1008.
* Geweke, J., S. Porter-Hudak (1983). The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis, 221-238.
* Giot, P., & Laurent, S. (2003). Value-at-risk for long and short trading positions. Journal of Applied Econometrics, 18(6), 641–664.
* Giot, P., & Laurent, S. (2004). Modelling daily value-at-risk using realised volatility and ARCH type models. Journal of Empirical Finance, 11, 379–398.
* Halbleib, R., & Pohlmeier, W. (2012). Improving the value at risk forecasts: Theory and evidence from the financial crisis, Journal of Economic Dynamics & Control 36, 1212–1228.
* Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873–889.
* Härdle, W., & Mungo, J. (2008). Value-at-risk and expected shortfall when there is long range dependence. SFB 649, discussion paper 2008‐006. Germany: Humboldtuniversität zu Berlin, 1-33.
* Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. New York: John Wiley & Sons, 213-257.
* Hoppe, R. (1999). Finance is not physics. Risk Professional, 1(7).
* Hurst, H. (1951). Long-term Capacity of Reservoirs. Trans Amer Soc Civ Eng., Engng 116, 770–808.
* Kuester, K., Mittnik, S., & Paolella, M. S. (2006). Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics, 4(1), 53–89.
* Lo, A. (1991). Long Term Memory in Stock Market Prices. Econometrica, 59(5), 1279-1313.
* Mandelbrot, B. B. (1971). When Can Price be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models. Review of Economics and Statistics, 53(3), 225-236.
* McMillan, D., & Kambouroudis, D. (2009). Are riskmetrics forecasts good enough? Evidence from 31 stock markets. International Review of Financial Analysis, 18, 117–124.
* Semenov, A. (2009). Risk factor beta conditional value-at-risk. Journal of Forecasting, 28 (6), 549–558.
* Shao, X. -D., Lian, Y. -J., & Yin, L. -Q. (2009). Forecasting value-at-risk using high frequency data: The realized range model. Global Finance Journal, 20(2), 128–136.
* Sriananthakumar, S., & Silvapulle, S. (2003). Estimating value at risks for short and long trading positions. Working paper. Australia: Department of Economics and Business Statistics, Monash University.
* Taleb, N. (April). Against VaR. Derivatives Strategy.
* Tang, T., & Shieh, S. (2006). Long memory in stock index futures markets: A value-at risk approach. Physica A, 366, 437–448.
* Tsay, R. S. (2002). Analysis of Financial Time Series. John Wiley & Sons, 71-101.
* Xekalaki, E., & Degiannakis, S. (2010). ARCH models for financial applications. New York: John Wiley & Sons, 107-128.
* Youssef, M., & Belkacem, L., & Mokni, Kh. (2015).Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. Energy Economics 51, 99-110.