برآورد اخلال ریزساختاری قیمتها و بررسی اثر آن بر بازده سهام با استفاده از پرتفولیوسوئیچینگ و داده های پربسامد
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارجلال سیفالدینی 1 , فریدون رهنمای رودپشتی 2 , هاشم نیکومرام 3
1 - دانشجوی دکتری مدیریت مالی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مدیریت مالی، تهران، ایران
2 - استاد و عضو هیئت علمی دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مدیریت مالی، تهران، ایران،
3 - استاد و عضو هیئت علمی دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مدیریت مالی، تهران، ایران
کلید واژه: اخلال ریزساختاری, معاملهگران مبتنی براخلال, دادههای پربسامد, پرتفولیوسوئیچینگ,
چکیده مقاله :
پژوهشهای مختلف انجام شده در حوزه ریزساختار بازارهای مالی نشان داده است که اخلال لازمه وجود یک بازار نقدشونده است، اما وجود اخلال در قیمتها از سوی دیگر به معنای انحراف موقت قیمتها از مقادیر بنیادین آن است. اگر در سهمی مقدار اخلال برای یک دوره بالا باشد، میتوان آن را به عنوان یکی از ریسکهای سهم شناخت. در پژوهش پیش رو پس از برآورد اخلال ریزساختاری قیمتها، با استفاده از پرتفولیو سوئیچینگ بازده پرتفویهایی که دارای اخلال بالایی هستند با بازده پرتفویهایی که دارای اخلال پایینتری هستند مقایسه کردهایم و به این نتیجه رسیدیم که ریسک بالا بودن اخلال به صورت یک صرف ریسک خود را در بازده آتی نشان میدهد و این بازده توسط مدلهای قیمتگذاری مبتنی بر بازار کارا قابل توضیح نیست. این امر در راستای تایید فرضیه بازار دارای اخلال، در مقابل فرضیه بازار کارا می باشد.
Several studies about microstructure noise in capital markets have found that it is a vital aspect of a liquid market. In the absence of noise traders trading volume would severely decrease. However, on the other hand, market microstructure noise deviates prices from their fundamental values. In this paper, we separate the microstructure noise from the price process and then we ask whether high frequency estimates of microstructure noise contain a risk factor and whether that risk factor is priced in the market, meaning that stocks that covary with our high-frequency measure of noise tend to get compensated in the form of higher returns. We examine this question through a portfolio switching approach by looking at the returns of portfolios sorted on our high frequency measurement of the magnitude of the market microstructure noise. The results show that the portfolio corresponding to the highest quartile noise outperforms the portfolio with the lowest quartile noise.
* آلعمران, ر. آلعمران, س. (1392). اثر پذیری بازار سهام در نتیجه رشد نامنظم حجم نقدینگی. فصلنامه بورس اوراق بهادار, 6(22), 5-24.
* خداپرستی, ف. (1376). فرهنگ جامع واژگان مترادف و متضاد زبان فارسی. دانشنامه فارس.
* عباسین, ع., نظری, م., فرزانگان, ا. (1391). اثرات سیاست پولی در پیدایش حباب قیمتی سهام در بورس اوراق بهادار تهران. 5(18), 19-38.
* کرباسی یزدی, ح., نوریفرد, ی., چناری بوکت, ح. (1391). مطالعه پدیده بازگشت به میانگین در بورس اوراق بهادار تهران با استفاده از آزمون ریشه واحد. فصلنامه علمی پژوهشی دانش سرمایهگذاری, 1(4), 87-103.
* Ahn, H.-J., & Cheung, Y.-L. (1999). The intraday patterns of the spread and depth in a market without market makers: The Stock Exchange of Hong Kong. Pacific-Basin Finance Journal, 7(5), 539-556.
* Ait-Sahalia, Y., & Xiu, D. (2012). Likelihood-Based Volatility Estimators in the Presence of Market Microstructure Noise. In L. Bauwens, C. M. Hafner, & S. Laurent, Handbook of Volatility Models and Their Applications (p. 348). John Wiley & Sons.
* Ait-Sahalia, Y., & Yu, J. (2009). High Frequency Market Microstructure Noise Estimates and Liquidity Measures. Annals of Applied Statistics, 3(1), 422-457.
* Ait-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005a). Ultra high frequency volatility estimation with dependent microstructure noise. Discussion Paper Series 1: Economic Studies, pp. pp. 1-60.
* Ait-Sahalia, Y., Mykland, P., & Zhang, L. (2005b). How often to sample a continuous-time process in the presence of market microstructure noise. Review of Financial Studies, 18(2), 351-416.
* Benos, A. V. (1998). Aggressiveness and survival of overconÞdent traders. Journal of Financial Markets, 1, pp. 353-383.
* Black, F. (1986). Noise. The Journal of Finance, 41(3), pp.529-543.
* Bodie, Z., Kane, A., & Marcus, A. (2009). investments (8th ed.). mcGraw-Hill/Irwin.
* Doman, M. (2010). Liquidity and market microstructure noise: evidence from the Pekao data. Dynamic Econometric Models, 10, 5-14.
* Gooptu, S. (1994). Are portfolio flows to emerging markets complementary or competitive? Policy Research Working Paper No.1360.
* Grant, D. (1978). Market timing and portfolio management. Journal of Finance, 1119-1131.
* Harris, L. (2003). Trading and Exchanges: Market Microstructure for Practitioners. Oxford University Press.
* Hu, G. X., Pan, J., & Wang, J. (2013). Noise as Information for Illiquidity. The Journal of Finance, 68(6), pp. 2341–2382.
* Itō, K. (2006). Essentials of Stochastic Processes. American Mathematical Society.
* Jong, F. d., & Rindi, B. (2009). The Microstructure of Financial Markets. Cambridge University Press.
* Lillo, F., & MiccichÈ, S. (2010). High‐Frequency Data. Encyclopedia of Quantitative Finance.
* Morawski, J. (2009). Investment Decisions on Illiquid Assets: A Search Theoretical Approach to Real Estate Liquidity. Springer Science & Business Media.
* Piasecki, K. (2004). Optimization costs of switching portfolio as transportation problem. Operations Research and Decisions, 2, 51-60.
* Smeets, R., van der Sluis, L., Kapetanovic, M., Peelo, D. F., & Janssen, A. (2015). Switching in Electrical Transmission and Distribution Systems. Wiley.
* Tissaoui, K. (2012). The intraday pattern of trading activity, return volatility and liquidity: Evidence from the emerging Tunisian stock exchange. International Journal of Economics and Finance, 4(5), 156-176.
* Vishwanath, R., & Krishnamurti, C. (2009). Investment Management: A Modern Guide to Security Analysis and Stock Selection. Springer Science & Business Media.
* Weston, J. P. (2001). information, liquidity and noise. Unpublished working paper. Rice University.
* Xiu, D. (2010). Quasi-maximum likelihood estimation of volatility with high frequency data. Journal of Econometrics(159), 235–250.
Zhang, L., Mykland, P., & Ait-sahalia, Y. (2005). A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data. Journal of the American Statistical Association, 100(472), 1394–1411.