ارزیابی ورشکستگی با استفاده ازروشی جدید در نظریه بازیها و برنامهریزی بازهای
محورهای موضوعی : آمارآیدا باتمیز 1 , مهدی الله دادی 2
1 - گروه ریاضی، دانشگاه سیستان و بلوچستان، سیستان و بلوچستان، ایران
2 - گروه ریاضی، دانشگاه سیستان و بلوچستان، سیستان و بلوچستان، ایران
کلید واژه: DEA, Bankruptcy, Game theory, interval programming,
چکیده مقاله :
برخی از پارامترهای موجود در مسائل عالم واقعیت دارای عدم قطعیت میباشند. یکی از مسائل نادقیق که پارامترهای آن دارای حالت کیفی میباشند، مسائل اقتصادی مانند مسئلهی ورشکستگی است. در اینصورت ممکن است با دیدگاه مسئولین، مدیران شرکتها و سازمانها، با مفاهیم نادقیق از جمله بازهها برخورد کنیم. بر این اساس، در این مقاله با استفاده از مفاهیم نظریهی بازیهای تحلیل پوششی دادهها (DEA) که مفهوم کاربردی آن در تمامی جهتها عینیت دارد و تلفیق آن با مدلهای نادقیق از نوع بازهای، مسئلهی ورشکستگی را ارزیابی و یک نوع بازی بازهای را برای پیشبینی ورشکستگی تعیین میکنیم و در آخر بازه ی خو ش بینانه و بدبینانهای را برای ارزیابی ورشکستگی معرفی میکنیم که به ما در ارزیابیهای دقیق اقتصادی با مفاهیم نادقیق کمک شایانی میکند و در مسائلی که عدم قطعیت حضور دارد به راحتی میتوان با تبدیل آنها به حالتهای بازهای مسائل را سادهتر تحلیل و بررسی کرد.
Some of the parameters in issues of the reality world are uncertainty. One of the uncertain problems with the qualitative parameters is economic problems such as bankruptcy problem. In this case, there is a probability of dealing with imprecise concepts including the intervals regarding the official’s viewpoint, organizations’ managers. Accordingly, this article uses the concepts of data envelopment analysis (DEA) game theory’ applications that it is appeared in all areas of studies, and combining it with uncertainty models like intervals, assess bankruptcy and specify the pessimistic and optimistic interval for bankruptcy assessment that hep us to assess uncertain concepts in economics and in the problems that we have certain, converting to interval programming a, is studied problems simply.
[1] Premachandra I.M., Gurmeeet Singh Bhabra., Toshiyuki Sueyoshi. (2009). DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique. European Journal of Operational Research 193, 412-424.
[2] Altman, E. I. (1968). Financial ratios, discriminated analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609.
[3] Leobardo Plata-Pérez, Joss Sánchez-Pérez. (2011).Convexity and marginal contributions in bankruptcy games
[4] Nir Dagan, Oscar Voliji. (1993). the bankruptcy problem: A cooperative bargaining approach. Mathematical Social Sciences 26, 287-297.
[5] Charnes, A. Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research. 2(4), 429-444.
[6] Chambers, R. G, Chung, Y., & Fare, R. (1998). Profit directional distance function and Nerlovian efficiency. Journal of Optimization and Theory and Application, 12,233-247
[7] Udaya Shetty, Pakala T.P.M., Mallikarjunappa T. (2012). A modified directional distance formulation of DEA to assess bankruptcy: An application to IT/ITES companies in India. Expert lists with Applications 39, 1988-1997.
[8] Tomoe Entani., Yutaka Maeda., Hideo Tanaka. (2002). Dual models of interval DEA and it’s extension to interval data. European Journal of Operational Research 136, 32-45.
[9] Aumann, R. J., Maschler, M. (1985). “Game theoretic analysis of a bankruptcy problem from the Talmud”, Journal of Economic Theory, 36, 195 -213.
[10] Driessen, T. (1988). Cooperative games, solutions and applications. Theory and Decision Library, Springer.
[11] Huang, G. H.,Moore, R. D. (1993). Grey linear programming, its solving approach, and its application. International Journal of Systems Science, 24, 159-172.
[12] Tong, S. C. (1994). Interval number, fuzzy number linear programming. Fuzzy Sets and Systems, 66, 301-306.
[13] Wang, X., Huang, G. (2014). Violation analysis on two-step method for interval linear programming. Information Sciences, 281, 85-96.
[14] Zhou, F., Huang, G. H., Chen, G., Guo, H. (2009) Enhanced-interval linear programming. European Journal of Operational Research, 199, 323-333.
[15] Chinneck, J. W., Ramadan, K. (2000). Linear programming with interval coefficients. Journal of the Operational Research Society, 51, 209-220.
[16] Alefeld, G., Herzberger, J. (1983). Introduction to Interval Computations. New York: Academic Press.
[17] Allahdadi. M Mishmast Nehi H. (2013). The optimal solution set of the interval linear programming problems.Original paper
[18] Allahdadi. M Mishmast Nehi H. (2013). The Optimal Value Bounds of the Objective Function in the Interval Linear Programming Problem. Chiang Mai J. Sci. 2015; 42 (2)
[19] Allahdadi. M Mishmast Nehi H. i Ashayerinasab, HasanAl. Javanmard Moslem. (2016). Improving the modified interval linear programming method by new techniques.
[20] Bok. J (2014). Cooperative interval games, Department of Applied Mathematics, Charles University in Prague
[21] Branzei. R., Tijs. S., Alparslan G¨ok . S.Z(2010). Cooperative interval games: a survey. Central European Journal of Operations Research
[22] Alparslan G¨ok S.Z ., Branzei. R., S. Tijs. Convex Interval Games (2009). Convex Interval Games, Journal of Applied Mathematics and Decision Sciences.
[23] Ashayerinasab, HasanAl., Mishmast Nehi H., Allahdadi.M (2018). Solving the interval linear programming problem: A new algorithm for a general case.
[24] باتمیز، حسینزاده سلجوقی. روشی جدید در تعیین ورشکستگی با استفاده از تحلیل پوششی دادهها و تئوری مجموعههای راف فازی. مجله مدلسازی پیشرفته ریاضی اهواز. 1395