برخی از خواص مجموع عملگرهای ترکیبی وزن دار روی فضای فوک
محورهای موضوعی : آمار
1 - عضو هیأت علمی، گروه ریاضی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - دانشجوی دکتری، گروه ریاضی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: Fock space, Numerical range, Weighted composition operator, Spectrum,
چکیده مقاله :
فرض کنید که H یک فضای هیلبرت باشد. برای هر f∈Hعملگر ضربی به صورت M_φ (f)=φf تعریف می شود. فرض کنید φ نگاشتی تام باشد. برای هر تابع f متعلق به فضای فوک F^2عملگر ترکیبی C_φ را به صورت C_φ (f)=f∘φ تعریف می کنیم. برای دو تابع تام ψ و φ، عملگر ترکیبی وزن دار را با نماد C_(ψ,φ) نمایش داده و برای هر f∈F^2 به فرم C_(ψ,φ) (f)=ψ.(f∘φ) تعریف می کنیم. همچنین برد عددی عملگر کراندارT را با نمادW(T) نمایش داده و به صورتW(T)={⟨Tf,f⟩:‖f‖=1} تعریف می کنیم. در این مقاله، طیف نقطهای برخی از عملگرهای به فرم C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ) را در حالتی که φ_1 و φ_2 دارای نقطه ثابت مشترک هستند، مشخص و یک زیر فضای ناوردا برای عملگر (C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ) )^* معرفی می کنیم. سپس با استفاده از این مطالب برای عملگرهای فشرده C_(ψ_1,φ_1 ) و C_(ψ_2,φ_2 )، طیف عملگر C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ) را پیدا کرده و بعد از آن برد عددی عملگر C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ) را که در آن φ_1 و φ_2 دارای نقطه ثابت مشترک باشند را بررسی می کنیم.
Let H be a Hilbert space. For each f∈H, we define a multiplication operator M_φ by M_φ (f)=φf. Let φ be an entire function. For each f belongs to the Fock space F^2, the composition operator C_φ is defined by C_φ (f)=f∘φ. For entire functions ψ, φ and f∈F^2, the weighted composition operator C_(ψ,φ) on F^2 are given by C_(ψ,φ) (f)=ψ.(f∘φ). Let T be a bounded operator on H, the set W(T)={⟨Tf,f⟩:‖f‖=1} is called the numerical range of T. In this paper, we find the point spectrum of some operators C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ), when φ_1 and φ_2 have the some fixed point. Moreover, we obtain an invariant subspace for the operator (C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ) )^*. Then by these results, for compact operators C_(ψ_1,φ_1 ) and C_(ψ_2,φ_2 ), we find the spectrum of C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ). Then for φ_1 and φ_2 which have the some fixed point, we investigate the numerical range of C_(ψ_1,φ_1 )+C_(ψ_2,φ_2 ).
