جوابهای خودمتشابه شار یامابه و منیفلدهای انیشتینگونه گرادیان در هندسه فینسلر
محورهای موضوعی : هندسهمحمد یاراحمدی 1 , ندا ایزدیان 2 , سینا هدایتیان 3
1 - گروه ریاضی، دانشکده علوم ریاضی و کامپیوتر، دانشگاه شهید چمران اهواز، اهواز، ایران
2 - گروه ریاضی، دانشکده علوم ریاضی و کامپیوتر، دانشگاه شهید چمران اهواز، اهواز، ایران
3 - گروه ریاضی، دانشکده علوم ریاضی و کامپیوتر، دانشگاه شهید چمران اهواز، اهواز، ایران
کلید واژه: Einstein-type manifold, Finsler metric, finite topological type, Yamabe flow, Yamabe soliton,
چکیده مقاله :
در این مقاله، به بررسی معادله شار یامابه فینسلری و سالیتونهای یامابه فینسلری میپردازیم. نشان خواهیم داد که با گروههای یک پارامتری موضعی از دیفئومورفیسمها که توسط میدان برداری منتسب به سالیتونهای یامابه فینسلری تولید شدهاند، دستهای از مترهای فینسلری ایجاد میشود که جوابهای معادله شار یامابه فینسلری هستند. به عبارت دیگر معادل هر سالیتون یامابه فینسلری، جوابهایی از معادله شار یامابه فینسلری را مییابیم. این دسته از جوابهای پیدا شده از شار یامابه فینسلری، با یک تابع مقیاس و گروههای یک پارامتری از دیفئومورفیسمها با هم مرتبط میشوند که ویژگی جالبی از نظر هندسه و فیزیک این جوابها بهدست میدهد. این جوابها با ویژگی ذکر شده، جوابهای خودمتشابهاند. در واقع بین جوابهای خودمتشابه از معادله شار یامابه فینسلری و سالیتونهای یامابه فینسلری یک تناظر برقرار میکنیم. بهطور کلی، این تناظر را به اینصورت نشان میدهیم که سالیتونهای یامابه فینسلری جوابهای معادله شار یامابه فینسلری است و بالعکس، جوابهای خاصی از معادله شار یامابه فینسلری، سالیتونهای یامابه فینسلریاند. در ادامه، منیفلدهای انیشتینگونه گسترشیافته گرادیان کامل فینسلری را مطالعه میکنیم. بهعلاوه، اگر تانسور ریچی از پایین کراندار و شعاع تزریقی بزرگتر از صفر باشد یا تانسور ریچی از بالا کراندار باشد، نشان میدهیم منیفلد انیشتینگونه گسترشیافته گرادیان کامل فینسلری، ساختار توپولوژیگونه متناهی دارد یعنی با درون یک منیفلد فشرده مرزدار همسانریخت است.
In the present work, the concepts of Finslerian Yamabe flow equation and Yamabe solitons are investigated. First of all, by using the local one-parameter group of diffeomorphism relevant to Yamabe soliton’s vector fields, we find a group of Finslerian metrics as solutions to the Finslerian Yamabe flow. In the other words, a Finslerian Yamabe soliton is a solution of the Finslerian Yamabe flow. These solutions are self-similar solutions of Finslerian Yamabe flow equation and have interesting geometric and physical properties. Furthermore, the notion of extended gradient Einstein-type manifolds is studied on Finsler spaces. Moreover, we show that by considering either the Ricci tensor is bounded from below and injectivity radius is bounded away from zero or the Ricci tensor is bounded from above, then the complete extended gradient Einstein-type Finslerian manifold is of finite topological type structure. Indeed, this manifold is homeomorghic to the interior of a compact manifold with boundary.
[1] R. S. Hamilton. The Ricci flow on surfaces. In: Mathematics and general relativity (Santa Cruz, CA, 1986), Volume 71 of Contemp. Math. 237-262, Amer. Math. Soc. 1988
[2] B. Bidabad, M. Yar Ahmadi. On complete Yamabe solitons. Advances in Geometry. 1 18: 101-104 (2018)
[3] L. Ma, L. Cheng, A. Zhu. Extending Yamabe flow on complete Riemannian manifolds. Bull. Sci. Math. 136: 882-891 (2012)
[4] S. Deshmukh, B. Y. Chen. A note on Yamabe solitons. Balkan of Geometry and Its Applications. 23 1: 37-43 (2018)
[5] S. Y. Hsu. A note on compact gradient Yamabe solitons. J. Math. Anal. Appl. 388: 725-726 (2012)
[6] B. Bidabad, M. Yar Ahmadi.
On Quasi-Einstein Finsler spaces.
Bulletin of the Iranian Mathematical Society, 40 no. 4: 921-930 (2014)
[7] G. Catino. On the geometry of gradient Einstein-type manifolds. Pacific Journal of Mathematics 286. 1: 39-67 (2016)
[8] J. Milnor. A note on curvature and fundamental group. J. Differential Geometry, 2: 1-7 (1968)
[9] D. Gromoll, W. T. Meyer. Examples of complete manifolds with positive Ricci curvature. Journal of
Differential Geometry, 21 2: 195-211 (1985)
[10] F. Q. Fang, J. W. Man, Z. L. Zhang. Complete gradient shrinking Ricci solitons have finite topological type. Comptes Rendus Mathematique, Vol.
346: 653-656 (2008)
[11] M. Yar Ahmadi, S. Hedayatian. Finite topological type of complete Finsler gradient shrinking Ricci solitons. Turk J Math. 45: 2419-2426 (2021)
[12] M. Yar Ahmadi. On the gradient Finsler Yamabe solitons. AUT Journal of Mathematics an computing. 1(2): 229-233 (2020)
[13] B. Bidabad, M. Yar Ahmadi. On complete Finslerian Yamabe solitons. Differential Geometry and it’s Application. 66: 52-60 (2019)
[14] B. Bidabad, M. Yar Ahmadi. On compact Ricci solitons in Finsler geometry. Comptes Rendus Mathematique. 353(11): 1023-1027 (2015)
[15] B. Bidabad, M. Yar Ahmadi. Complete Ricci solitons on Finsler manifolds. Science China Mathematics. 61 (10): 1825-1832 (2018)
[16] Z. Shen. Riemann-Finsler geometry with applications to information geometry. Chinese. Annals. Math. 27: 73-94 (2006)
[17] H. Akbar-Zadeh. Initiation To Global Finslerian Geometry. Volume 68. Elsevier Science, 2006
[18] B. Chow, P. Lu, L. Ni. Hamiltons Ricci Flow. Graduate Studies in Mathematics, Vol. 77. Providence, RI, USA: Science Press, 2006.
[19] W. Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proceedings of the AMS 136 5: 1803-1806 (2008)
[20] Z. Shen. On complete manifolds of nonnegative kth-Ricci curvature. Transactions of the American Mathematical Society, 338 1: 289--310 (1993)