برآوردیابی بیز انقباضی پارامتر مقیاس توزیع نمایی دو پارامتری مبتنی بر دادههای سانسور نوع دوم فزاینده و تابع زیان آنتروپی تعمیم یافته
محورهای موضوعی : آمارمهدی بازیار دیزآبادی 1 , عین اله دیری 2 , عزت اله بالوئی جامخانه 3
1 - گروه آمار، واحد قائمشهر، دانشگاه آزاد اسلامی، قائم شهر، ایران
2 - گروه آمار، واحد قائمشهر، دانشگاه آزاد اسلامی، قائم شهر، ایران
3 - گروه آمار، واحد قائمشهر، دانشگاه آزاد اسلامی، قائم شهر، ایران
کلید واژه: Progressive Type-II Censored Data, Bayes Shrinkage Estimation, General Entropy Loss Function (GELF), Two Parameter Exponential Distribution,
چکیده مقاله :
هدف اصلی ما در این مقاله تحلیل برآوردگرهای بیز انقباضی پارامتر مقیاس توزیع نمایی دوپارامتری تحت تابع زیان آنتروپی تعمیم یافته بر اساس توزیع پیشین مزدوج و دادههای سانسورشده نوع دوم فزاینده در حضور پارامتر مکان میباشد. به همین منظور در این مقاله ابتدا برآوردگر انقباضی پارامتر مقیاس را بر اساس برآوردگر بیزی که تحت تابع زیان تعمیم یافته آنتروپی و توزیع پیشین مزدوج به دست آمده ارائه داده و سپس کارایی برآوردگر پیشنهادی را با سایر برآوردگرها مثل، برآوردگر درستنمایی ماکزیمم ، برآوردگر بیز، برآوردگر بیز تجربی و برآوردگر بیز انقباضی تجربی مورد بررسی قرار میدهیم. روشی که ما در این مقاله برای بدست آوردن برآوردگر بیز تجربی و برآوردگر بیز انقباضی تجربی استفاده شده، روش حدسی است. با استفاده از شش طرح مختلف و دادههای شبیه-سازی شده و توزیعهای پیشین جفری و هارتیگان، کارایی برآوردگرهای پیشنهادی با هم مقایسه میشوند، نهایتا با استفاده از دادههای واقعی کارایی برآوردگرهای پیشنهادی مورد بررسی قرار میگیرد.
Our main objective in this paper is to analyze Bayesian Shrinkage Estimators of the parameter of two-parameter Exponential Distribution Scale under General Entropy Loss Function based on the prior conjugate distribution and Progressive Type-II Censored Data in the presence of the location parameter. To this end, in the present paper, firstly, we present Shrinkage Estimator of scale parameter based on the Bayesian estimator that obtained under General Entropy Loss Function, and prior conjugate distribution, and then investigate the efficiency of the proposed estimator with other estimators, such as maximum likelihood estimator, Bayes estimator, empirical Bayesian estimator, and empirical Bayesian Shrinkage Estimator. The method used in this paper to compute empirical Bayesian estimator, and empirical Bayesian Shrinkage Estimator is guessing. Using simulated data based on Monte Carlos’ method, under six censorship schemes and with two prior distributions of Jeffrey and Hartigan, the effectiveness of estimators is compared. Finally, using actual data, the efficiency of the proposed estimators will be examined.
]1[ محمدی منفرد، معصومه (1399) "استنباطهای کلاسیک و بیزی، در توزیع پواسن-نمایی بر پایهی دادههای سانسور شدهی هیبرید فزاینده نوع دو"، پژوهش های نوین در ریاضی، پذیرش آنلاین آذر 1399.
]2[ اصل فلاح، نیلوفر، کهنسال، اکرم، کاظمی، رامین (1399) "برآورد پارامترهای توزیع رایلی دوپارامتری تحت سانسور فزاینده با حذفهای دوجملهای"،
پژوهشهای نوین در ریاضی، اردیبهشت 1399.
[3] Ahmadi, J., Doostparast, M., Parsian, A., 2005. Estimation and prediction in a two-parameter exponential distribution based on K- Record values under LINEX loss function. Communication in Statistics. Theory and Methods, 34, 795–805.
[4] Awad, A. M., Gharraf, M. K., 1986. Estimation of P[Y < X] in the Burr case: A comparative study. Journal of Communications in Statistics- Simulation and Computation, 15(15), 389–403.
[5] Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: Theory, method and applications. Boston: Birkhauser.
[6] Balakrishnan, N., Sandhu, R. A., 1995. A Simple Simulation algorithm for generating progressive type-II censored samples. Journal of the American Statistician, 49(2), 119–230.
[7] Calabria, R., Pulcini, G., 1996. Point estimation under asymmetric loss functions for left truncated exponential samples. Journal of Communications in Statistics-Theory & Methods, 25(3), 585–600.
[8] Cramer, E., Iliopoulos, G., 2010. Adaptive progressive type-II censoring. Test, 19(2), 342–358.
[9] Dey, D. K., Ghosh, M., Srinivasan, C., 1987. Simultaneous estimation of parameters under entropy loss. Journal of Statistical Planning and Inference, 15, 347–363.
[10] Dey, D. K., Liu, P. L., 1992. On comparison of estimators in a generalized life model. Journal of Microelectronics Reliability, 32, 207–221.
[11] Harris, E., Shakarki, G., 1979. Use of the population distribution to improve estimation of individual mean in epidemiological studies. Journal of Chronical Disease, 32, 233–243.
[12] Hendi, M. L., Abu-Youssef, A., Alraddadi, A., 2007. A Bayesian analysis of record statistics fro A.m the Weibull model. International Mathematical Forum, 2(13), 619–631.
[13] Kundu, D., 2008. Bayesian inference and reliability sampling plan for Weibull distribution. Journal of Technometrics, 50, 144–154.
[14] Kundu, D., Pradhan, B., 2009. Bayesian inference and life testing plans for generalized Exponential distribution. Journal of Science in China, Series A: Mathematics, 52(6), 1373–1388.
[15] Lindley, D. V. (1969). Introduction to probability and statistics from a Bayesian view point. Cambridge University Press.
[16] Ng, H. K. T., Kundu, D., Chan, P. S., 2009. Statistical analysis of Exponential lifetimes under an adaptive type-II progressive censoring scheme. Journal of Naval Research Logistics, 56, 687–698.
[17] Marshall, R. J., 1991. Mapping disease and mortality rates using empirical Bayes estimators. Journal of Applies Statistics, 40, 283–294.
[18] Prakash, G., Singh, D. C., 2006. Shrinkage estimators for the inverse dispersion of the inverse Gaussian distribution under the LINEX loss function. Austrian Journal of Statistics, 35(4), 463–470.
[19] Salman, A. N., Shareef, R. A., 2014. Bayesian shrinkage estimator for the scale parameter of Exponential distribution under improper prior distribution. International Journal of Statistics and Applications, 4(3), 135–143.
[20] Singh, G. P., Singh, S. K., Singh, U., Upadhyay S. K., 2008. Bayes estimators of Exponential parameters from a censored sample using a guess estimate. Data Science Journal, 7, 106–114.
[21] Thompson, J. R., 1968. Some shrinkage techniques for estimating the mean. Journal of American Statistical Association, 63, 113-122.
[22] Tso, G.(1990). Forecasting money supply in Hong Kong with a multiple shrinkage estimator. In Proceeding of the ASA Section on Business and Commerce. ASA.
[23] Zellner A., 1986. Bayesian estimation and prediction using asymmetric loss function. Journal of American statistical Association, 81, 446–451.
[24] Al-Hemyari, Z. A., Al-Dabag, H.A., 2012. A class of shrinkage T estimators for the shape parameter of the Weibull lifetime model. Pakistan Journal of Statistics and Operational Research, 8(2), 167–184.