یک مدل ریاضی برای بررسی جریان خون بهعنوان جریان سیال کراس در طول رگ گرفته شده
محورهای موضوعی : آماراحمدرضا حقیقی 1 , نیکو پیرهادی 2 , محمد شهبازی اصل 3
1 - دانشیار، گروه ریاضی کاربردی، دانشکده علوم پایه، دانشگاه فنی و حرفهای، تهران، ایران
2 - کارشناسی ارشد، گروه ریاضی کاربردی، دانشکده علوم پایه، دانشگاه صنعتی ارومیه، ارومیه، ایران
3 - دکتری، گروه ریاضی کاربردی، دانشکده علوم پایه، دانشگاه تبریز، تبریز، ایران
کلید واژه: "Tapered Artery", "Cross Fluid", "Finite Difference Method", "Non-symmetric Stenosis", "Pulsatile Blood Flow",
چکیده مقاله :
در این تحقیق یک مدل دوبعدی برای جریان خون پالسی در طول رگ مخروطی با گرفتگی غیرمتقارن شبیهسازی شده است. جریان خون بهعنوان سیال کراس در یک لوله استوانه الاستیک با گرفتگی غیرمتقارن نسبت به جهت محوری و هندسهی وابسته به زمان مدلسازی میشود. دیواره عروق گرفته شده در طول رگ انعطافپذیر و غیرانعطافپذیر باهم مقایسه شده است. از فرض گرفتگی خفیف برای ساده کردن معادلات حاکم بر جریان استفاده میشود. با اعمال نگاشت مناسب شبکهی کسینوسی گرفته شده به یک شبکهی مستطیلی و صلب تبدیل میگردد. معادلات ناویر-استوکس حاکم بر جریان خون برای میدان سرعت با استفاده از روش تفاضلات متناهی حل میشود. به منظور اثبات درستی نتایج به دست آمده در تحقیق حاضر، نتایج حاصل با نتایج تحقیقات پیشین مورد مقایسه قرار گرفته و درستی مدل ارایه شده به اثبات رسیده است. مشخصههای اصلی جریان خون از قبیل دبی حجمی، مقاومت در برابر جریان، تنش برشی دیواره از روی پروفیل سرعت بدست آمده است. نمودارهای دوبعدی برای پارامترهای مختلفی از توزیع سرعت در شکلهای مختلف ارایه شده است.
In this research, a two-dimensional model of pulsatile blood flow through a tapered artery with a non-symmetric stenosis is simulated. The blood flow as a cross fluid is modeled in an elastic cylindrical tube with an axially non-symmetric stenosis and a time-dependent geometry. The velocity of blood flow is compared within an elastic artery and an inelastic artery. Mild stenosis approximation is applied to simplify the governing equations. By applying an appropriate coordinate transformation, a cosine elastic artery turns into a rectangular and rigid artery. Using the finite difference method the Navier-Stokes equations governing the dynamics of the blood flow are numerically solved for velocity field. The correctness of the proposed model is proved through a comparison between the obtained results the present study and the previously obtained ones by others. The blood flow characteristics including resistive impedances, volumetric flow rate, and wall shear stress are obtained via the axial velocity profile. Various Two-dimensional diagrams for different parameters of the velocity distribution are also provided.
[1] Shillingford, J. P. (1965). Physiology and Biophysics of the Circulation. Proceedings of the Royal Society of Medicine, 58(12), 1103.
[2] Pedley, T. J. (1980). The fluid mechanics of large blood vessels: Cambridge Univ.
[3] Tu, C., & Deville, M. (1996). Pulsatile flow of non-Newtonian fluids through arterial stenoses. Journal of biomechanics, 29(7), 899-908.
[4] Chakravarty, S., & Mandal, P. K. (2004). Unsteady flow of a two-layer blood stream past a tapered flexible artery under stenotic conditions. Computational Methods in Applied Mathematics Comput. Methods Appl. Math., 4(4), 391-409.
[5] Sankar, D. S. (2011). Two-phase non-linear model for blood flow in asymmetric and axisymmetric stenosed arteries. International Journal of Non-Linear Mechanics, 46(1), 296-305.
[6] Zaman, A., Ali, N., Sajid, M., & Hayat, T. (2015). Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery. AIP advances, 5(3), 037129.
[7] Chan, W. Y., Ding, Y., & Tu, J. Y. (2007). Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction. Anziam Journal, 47, 507-523.
[8] Yilmaz, F., & Gundogdu, M. Y. (2008). A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Australia Rheology Journal, 20(4), 197-211.
[9] Moayeri, M. S., & Zendehbudi, G. R. (2003). Effects of elastic property of the wall on flow characteristics through arterial stenoses. Journal of Biomechanics, 36(4), 525-535.
[10] Abdullah, I., & Amin, N. (2010). A micropolar fluid model of blood flow through a tapered artery with a stenosis. Mathematical Methods in the Applied Sciences, 33(16), 1910-1923.
[11] Marques, P. F., Oliveira, M. E. C., Franca, A. S., & Pinotti, M. (2003). Modeling and simulation of pulsatile blood flow with a physiologic wave pattern. Artificial organs, 27(5), 478-485.
[12] Haghighi, A. R., Asl, M. S., & Kiyasatfar, M. (2015). Mathematical modeling of unsteady blood flow through elastic tapered artery with overlapping stenosis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2), 571-578.
[13] Mukhopadhyay, S., & Layek, G. (2008). Numerical modeling of a stenosed artery using mathematical model of variable shape. AAM Intern, 3(6), 308-328.
[14] Haghighi, A. R., & Asl, M. S. (2015). Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. International Journal of Biomathematics, 8(04), 1550056.
[15] Ali, N., Zaman, A., & Sajid, M. (2014). Unsteady blood flow through a tapered stenotic artery using Sisko model. Computers & Fluids, 101, 42-49.
[16] Mandal, P. K. (2005). An unsteady
analysis of non-Newtonian blood flow through tapered arteries with a stenosis. International Journal of Non-Linear Mechanics, 40(1), 151-164.
[17] Haghighi, A. R., & Asl, M. S. (2015). Numerical simulation of unsteady blood flow through an elastic artery with a non-symmetric stenosis. Modares Mechanical Engineering, 14(10), 26-34.
[18] Sankar, D. S. (2016). Perturbation analysis for pulsatile flow of Carreau fluid through tapered stenotic arteries. International Journal of Biomathematics, 9(04), 1650063.
[19] Ali, N., Zaman, A., Sajid, M., Nieto, J. J., & Torres, A. (2015). Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel. Mathematical biosciences, 269, 94-103.
[20] Shaw, S., Murthy, P. V. S., & Pradhan, S. C. (2010). The effect of body acceleration on two dimensional flow of Casson fluid through an artery with asymmetric stenosis. The Open Conservation Biology Journal, 2(1).
[21] Sankar, D. S., & Lee, U. (2009). Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries. Communications in Nonlinear Science and Numerical Simulation, 14(7), 2971-2981.
[22] Chakravarty, S., & Mandal, P. K. (2005). Effect of surface irregularities on unsteady pulsatile flow in a compliant artery. International Journal of Non-Linear Mechanics, 40(10), 1268-1281.
[23] Sankar, D. S. (2011). Two-phase non-linear model for blood flow in asymmetric and axisymmetric stenosed arteries. International Journal of Non-Linear Mechanics, 46(1), 296-305.
[24] Ikbal, M. A., Chakravarty, S., & Mandal, P. K. (2009). Two-layered micropolar fluid flow through stenosed artery: effect of peripheral layer thickness. Computers & Mathematics with Applications, 58(7), 1328-1339.
[25] Haghighi, A. R., & Chalak, S. A. (2017). Mathematical modeling of blood flow through a stenosed artery under body acceleration. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7), 2487-2494.
[26] Sankar, D. S., & Lee, U. (2011). FDM analysis for MHD flow of a non-Newtonian fluid for blood flow in stenosed arteries. Journal of mechanical science and technology, 25(10), 2573.
[27] Mustapha, N., Mandal, P. K., Johnston, P. R., & Amin, N. (2010). A numerical simulation of unsteady blood flow through multi-irregular arterial stenoses. Applied Mathematical Modelling, 34(6), 1559-1573.
[28] Young, D. F. (1968). Effect of a time-dependent stenosis on flow through a tube. Journal of Engineering for Industry, 90(2), 248-254.
[29] Zaman, A., Ali, N., Bég, O. A., & Sajid, M. (2016). Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. International Journal of Heat and Mass Transfer, 95, 1084-1095.
[30] Ismail, Z., Abdullah, I., Mustapha, N., & Amin, N. (2008). A power-law model of blood flow through a tapered overlapping stenosed artery. Applied Mathematics and Computation, 195(2), 669-680.
[31] Ling, S. C., & Atabek, H. B. (1972). A nonlinear analysis of pulsatile flow in arteries. Journal of Fluid Mechanics, 55(3), 493-511.
[32] Amsden, A. A., & Harlow, F. H. (1970). The SMAC method: a numerical technique for calculating incompressible fluid flows (No. LA-4370). Los Alamos Scientific Lab., N. Mex.
[33] Markham, G., & Proctor, M. V. (1983). Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance. 63, M82.