جواب های چندگانه برای مسایل مقدار مرزی مرتبه دوم با نماهای متغیر
محورهای موضوعی : آمارقاسم علیزاده افروزی 1 , مصطفی نگراوی 2 , مهدی آژینی 3
1 - گروه ریاضی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
2 - گروه ریاضی و آمار، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه ریاضی و آمار، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Neumann conditions, Critical points theory, p(x)-Laplacian, Multiple solutions,
چکیده مقاله :
چکیدهدر این مقاله، فضاهای لبگ- سوبولف و قضیه های نقاط بحرانی را معرفی می کنیم سپس مساله مقدار مرزی که شامل یک معادله دیفرانسیل معمولی با عملگر p(x)- لاپلاسین و شرط نویمن غیرهمگن است را در نظر می گیریم. نتایج وجودی را برای معادلات دیفرانسیل معمولی به همراه مسائل بیضوی نویمن که به دو پارامتر حقیقی بستگی دارند بدست آورده ایم. با استفاده از نظریه نقطه بحرانی، به طور دقیق، وجود سه جواب را برای مسائل p(x)- لاپلاسین نشان می دهیم. با استفاده از قضیه های نقطه بحرانی که به اثبات رساندیم چند نتیجه را بیان می کنیم. در این مقاله، فضاهای لبگ- سوبولف و قضیه های نقاط بحرانی را معرفی می کنیم سپس مساله مقدار مرزی که شامل یک معادله دیفرانسیل معمولی با عملگر p(x)- لاپلاسین و شرط نویمن غیرهمگن است را در نظر می گیریم. نتایج وجودی را برای معادلات دیفرانسیل معمولی به همراه مسائل بیضوی نویمن که به دو پارامتر حقیقی بستگی دارند بدست آورده ایم. با استفاده از نظریه نقطه بحرانی، به طور دقیق، وجود سه جواب را برای مسائل p(x)- لاپلاسین نشان می دهیم. با استفاده از قضیه های نقطه بحرانی که به اثبات رساندیم چند نتیجه را بیان می کنیم.
In this paper, we introduce the Lebesgue -Sobolev spaces critical points theory then we consider the boundary value problem involving an ordinary differential equation with p(x)-Laplacian operator, and nonhomogeneous Neumann conditions. Existence results for ordinary differential equations with elliptic Neumann problems that depending on two real parameters are investigated. Precisely, by using the critical point theory, we show the existence of three weak solutions for p(x)-Laplacian problems. Using the critical point theorems we have proved, we give some conclusionsIn this paper, we introduce the Lebesgue -Sobolev spaces critical points theory then we consider the boundary value problem involving an ordinary differential equation with p(x)-Laplacian operator, and nonhomogeneous Neumann conditions. Existence results for ordinary differential equations with elliptic Neumann problems that depending on two real parameters are investigated. Precisely, by using the critical point theory, we show the existence of three weak solutions for p(x)-Laplacian problems. Using the critical point theorems we have proved, we give some conclusions
[1] G.A. Afrouzi, S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involv-ing the p-Laplacian, Nonlinear Anal. 66 (2007) 2281-2288.
[2] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ. 244 (2008) 3031-3059.
[3] G. Bonanno, A. Chinn, Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett. 23 (2010) 807-811.
[4] G. Bonanno, G. D'Agu, Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl. Anal., Volume 2010 (2010), Article ID 564363, 10 pages.
[5] G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343 (2008) 1166-1176.
[6] G. Bonanno, R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal. 54 (2003) 1-79.
[7] G. Bonanno, S. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010) 1-10.
[8] F. Cammaroto, A. Chinn, B. Di Bella, Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009) 4486-4492.
[9] G. D'Agu, Second-order boundary-value problems with variable exponents, Electron. J. Diff. Equ., Vol. 2014 (2014), No. 68, pp. 1-10.
[10] G. D'Agu, S. Heidarkhani, G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one dimensional p-Laplacian, Electron. J. Qual. Theory Diff.Equ. 24 (2013) 1-14.
[11] G. D'Agu, A. Sciammetta, Innitely many solutions to elliptic problems with variable expo-nent and nonhomogeneous Neumann conditions, Nonlinear Anal. 75 (2012) 5612-5619.
[12] X. Fan, S.G. Deng, Multiplicity of positive solutions for a class of inhomogeneous Neumann problems involving the p(x)-Laplacian, Nonlinear Differential Equations Appl. 16 (2009) 255-271.
[13] X. Fan, S.G. Deng, Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations, Nonlinear Anal. 67 (2007) 3064-3075.
[14] J.R. Graef, S. Heidarkhani, L. Kong, Variational-hemivariational inequalities of Kirchhoff-type with small perturbations of nonhomogeneous Neumann boundary conditions, Mathematics in Engineering, Science & Aerospace (MESA) 2017, Vol. 8 Issue 3, p345-357. 13p.
[15] S. Heidarkhani, G.A. Afrouzi, S. Moradi, G. Caristi, A variational approach for solving p(x)-biharmonic equations with Navier boundary conditions, Electron. J. Differ. Equ., Vol. 2017(2017), No. 25, pp. 1-15.
[16] S. Heidarkhani, A.L.A. De Araujo, G.A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr., DOI: 10.1002/ mana. 201600425.
[17] S. Heidarkhani, G.A. Afrouzi, M. Ferrara, S. Moradi, Variational approaches to impulsiveelastic beam equations of Kirchhoff type, Complex Var. Elliptic Equ. 61 (2016) 931-968.
[18] S. Heidarkhani, S. Moradi, D. Barilla, Existence results for second-order boundary-value problems with variable exponents, preprint.
[19] S. Heidarkhani, S. Moradi, S.A. Tersian, Three solutions for second-order boundary-value problems with variable exponents, preprint.
[20] Q. Liu, Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal. 68 (2008) 2119-2127.
[21] M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007) 1419-1425.
[22] B. Ricceri, On a three critical points theorem, Arch. Math. 75 (2000) 220-226.
[23] M. Ruzicka, Electrorheological
uids, Modeling and Mathematical Theory, Springer-Verlag, Berlin. (2000).
[24] X. Shi, X. Ding, Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem, Nonlinear Anal. 70 (2009) 3715-3720.
[25] X. J. Wang, R. Yuan, Existence of periodic solutions for p(x)-Laplacian systems, Nonlinear Anal. 70 (2009) 866-880.
[26] Q. Zhang, Existence of solutions for weighted p(x)-Laplacian system boundary value problems, J. Math. Anal. Appl. 327 (2007) 127-141.