همزمان سازی کلاس خاصی از سیستمهای آشوبی همترازمبتنی بر روش کنترل کننده مودلغزشی
محورهای موضوعی : مهندسی برق ( الکترونیک، مخابرات، قدرت، کنترل)امیرحسین رستم پور 1 , Assef Zare 2 , نرگس شفاعی 3
1 -
2 - Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
3 - دانشگاه آزاد اسلامی
کلید واژه: سیستمهای آشوبی همتراز, همزمان سازی زمان , کنترل مد لغزشی, کنترل تطبیقی, عدم قطعیت, تاخیر زمانی نامشخص,
چکیده مقاله :
در این مقاله يك مكانيزم كنترلي تطبيقي به منظور همزمان سازی یک کلاس خاص از سیستمهای آشوبی همتراز داراي تاخيرهاي نامشخص، اغتشاش و عدم قطعیت ارائهشدهاست. تاخیرها و پارامترها برای دو سیستم آشوبی همتراز پایه وپیرو، مجهول و متفاوت است. سیستمهاي آشوبی همتراز ، با استفاده از نمای لیاپانوف مثبت و جاذبهاي کران دار معرفی شده است. در مكانيزم كنترلي پيشنهادي، برای همزمان سازی از دو كنترل كننده خطی و مود لغزشی تطبيقي استفاده شده است. در رهيافت كنترلي پيشنهادي، با استفاده از شرايط لیپشیتز در سيستمهاي آشوبي، قوانین بروز رسانی پارامترهاي نامعين ارائهشده و با استفاده از تئوري لياپانوف، پايداري سيستم كنترلي پيشنهادي در همزمان سازي مقاوم سيستم هاي مذكور، اثبات شده است. در نهایت همزمان سازی سیستم آشوبی همتراز پایه و پیرو جرک و جنسیوتسیو دارای عدم قطعیت هاي غیرخطی، اغتشاشهای خارجی و همچنین پارامترها و تاخیرهای زمانی ثابت و نامشخص، با استفاده از مكانيزم كنترلي پيشنهادي انجام و شبيه سازي شدهاست. بررسی نتایج نشان میدهد، كنترل كننده پيشنهادي، در زماني اندك، بر اثرهاي اغتشاش خارجی و عدم قطعیت هاي کراندار موجود در سيستمها، غلبه کرده و تخمین پارامترهای سیستم اصلی در فرايند همزمان سازي به خوبی صورت گرفته است . است است است
Synchronization of a Class of Neutral Chaotic Systems based on Adaptive Sliding Mode Control Approach Synchronization of a Class of Neutral Chaotic Systems based on Adaptive Sliding Mode Control Approach Synchronization of a Class of Neutral Chaotic Systems based on Adaptive Sliding Mode Control Approach In this paper, adaptive control mechanism for finite time synchronization of a specific class of neutral chaotic systems is considered equal to unknown Delays disturbance and uncertainty. Delays and parameters are considered and different for two neutral chaotic systems equal to the master and the slave. The neutral chaotic system is introduced using a positive Lyapunov exponent and finite Attractor. in the proposed adaptive control mechanism two linear and adaptive sliding mode controllers have been used for synchronization.in the proposed approach control mechanism,the rules for updating the unknown parameters have been introduced by Lipshitz condition in chaotic system and use of Lyapunov function stability proposed control system in robust synchronization mentioned system have been confirmed. Finally, synchronization is performed between the master and slave neutral chaotic system )Jark and Gensiotsio( with nonlinear uncertainty and external disturbance as well as parameters and unknown time delay. Examination of the simulation results shows that the controller overcame the external disturbance and boundary uncertainty in the shortest time. And The estimation of the parameters of the main system is well done, which indicates the accuracy of the theory analysis.
[1] J. Author1, B. Author2, and K. Author3, "Title of Paper", Fuzzy Sets and Systems, Vol. x, NO. xx, August 2002, pp. 363 – 367.
[1] Kellert, Stephen H. In the wake of chaos: unpredictable order in dynamical systems, Science and its conceptual foundations. University of Chicago Press, Chicago, 1993.
[2] E. N. Lorenz, "Deterministic non-periodic flow", Journal of the Atmospheric Sciences, , Vol. 2, 1963, pp. 130 – 141.
[3] V. G. Ivancevic and T. T. Ivancevic, Complex nonlinearity: chaos, phase transitions, topology change, and path integrals, Springer, 2008.
[4] W. Chartbupapan, O. Bagdasar and K. Mukdasai, "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation", Mathematics, Vol. 8, NO. 82, 2020, pp. 1-10.
[5] Z. S. Aghaya, . A. Alfi and J. T. Machado, "Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation", Journal Pre-proof, 2020.
[6] F. Du and J.-G. Lu, "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities", Applied Mathematics and Computation, Vol. 375, NO. 2020, pp. 2-17.
[7] C. H. Lien and J.-D. Chen, "Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems", Journal of Dynamic Systems Measurement and Control, Vol. 125, NO. 2003, pp. 33-41.
[8] M. Liu, I. Dassios and F. Milano, "On the Stability Analysis of Systems of Neutral Delay Differential Equations", Circuit Systems and Signal Processing , Vol. 38, 2019, p. 1639–1653.
[9] W. Chen, S. Xu, Y. Li and Z. Zhang, "Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances", Journal of the Franklin Institute, 2020.
[10] H. Liu, S.-G. Li, H.-X. Wang, and G.-J. Li, “Adaptive fuzzy synchronization for a class of fractional-order neural networks,” Chinese Physics B, vol. 26, no. 3, Article ID 030504, 2017.
[11] S. Vaidyanathan and A. T. Azar, “Adaptive Control and Synchronization of Halvorsen Circulant Chaotic Systems,” in Advances in Chaos Beory and Intelligent Control, pp. 225– 247, Springer, Berlin, Germany, 2016.
[12] S. Vaidyanathan and A. T. Azar, “Generalized Projective Synchronization of a Novel Hyperchaotic Four-wing System via Adaptive Control Method,” in Advances in Chaos Beory and Intelligent Control, pp. 275–296, Springer, Berlin, Germany, 2016.
[13] S. Vaidyanathan, O. A. Abba, G. Betchewe, and M. Alidou, “A new three-dimensional chaotic system: its adaptive control and circuit design,” International Journal of Automation and Control, vol. 13, no. 1, pp. 101–121, 2019.
[14] S. Kumar, A. E. Matouk, H. Chaudhary, and S. Kant, “Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques,” International Journal of Adaptive Control and Signal Processing, vol. 35, no. 4, pp. 484–497, 2021.
[15] C. Huang and J. Cao, “Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system,” Physica A: Statistical Mechanics and Its Applications, vol. 473, pp. 262–275, 2017.
[16] I. Ahmad, A. B. Saaban, A. B. Ibrahim, M. Shahzad, and N. Naveed, “the synchronization of chaotic systems with different dimensions by a robust generalized active control,” Optik, vol. 127, no. 11, pp. 4859–4871, 2016.
[17] S. Çiçek, A. Ferikoglu, and ˘ ˙I. Pehlivan, “A new 3d chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application,” Optik, vol. 127, no. 8, pp. 4024–4030, 2016.
[18] S. Mobayen, “Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control
,” ISA Transactions, vol. 77, pp. 100–111, 2018.
[19] X. Chen, J. H. Park, J. Cao, and J. Qiu, “Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control,” Neurocomputing, vol. 273, pp. 9–21, 2018.
[20] U. E. Kocamaz, B. Cevher, and Y. Uyaroglu, “Control and ˘ synchronization of chaos with sliding mode control based on cubic reaching rule,” Chaos,” Solitons & Fractals, vol. 105, pp. 92–98, 2017.
[21] J. Sun, Y. Wang, Y. Wang, and Y. Shen, “Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control,” Nonlinear Dynamics, vol. 85, no. 2, pp. 1105–1117, 2016.
[22] Z. Zhao, X. Li, J. Zhang, and Y. Pei, “Terminal sliding mode control with self-tuning for coronary artery system synchronization,” International Journal of Biomathematics, vol. 10, no. 03, Article ID 1750041, 2017.
[23] J. Ni, L. Liu, C. Liu, and X. Hu, “Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2065–2083, 2017.
[24]. Dash S, Abraham A, Luhach AK et al, “Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis,” Int J Distrib Sens Netw, vol. 16, no. 1, pp. 1–18,2020.
[25]. Panahi S, Shirzadian T, Jalili M, Jafari S , “A new chaotic network model for epilepsy,” Appl Math Comput, vol. 346, pp.395–407, 2019.
[26]. Bowyer SM, Gjini K, Zhu X et al , “Potential biomarkers of schizophrenia from MEG resting-state functional connectivity networks: preliminary data,” J Behav Brain Sci, vol. 5, no. 1, pp.1–11,2015.
[27]. Babiloni C, Lizio R, Marzano N et al, “Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms,” Int J Psychophysiol, vol. 103, pp.88–102, 2016.
[28]. Kumar P, Parmananda P, “Control, synchronization, and enhanced reliability of aperiodic oscillations in the mercury beating heart system,” Chaos, vol. 28, pp. 045105,2018
[29]. Li C-H, Yang S-Y , “Eventual dissipativeness and synchronization of nonlinearly coupled dynamical network of Hindmarsh Rose neurons,” Appl Math Model, vol. 39. no 21, pp.6631–6644,2015
[30]. Malik S, Mir AJNN , “Synchronization of Hindmarsh Rose neurons,” Neural Netw, vol. 123, pp. 372–380, 2020.
[31]. Ge M et al , “Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network,” Appl Math Comput, vol.352, pp.136–145. 2019
[32] Bo W, and Guanjun W, “ On the Synchronization of Uncertain Master-Slave Chaotic System with Disturbance,” Chaos Solitons and Fractals, vol. 41,pp. 145–51. 2009.
[33] Zhao Z-S, Zhang J, and Sun L-K, “ Sliding Mode Control in Finite Time Stabilization for Synchronization of Chaotic Systems,” ISRN Appl Mathematics ,2013.
[34] Pooyan AH, Ali SSA, Saad M, and Hemanshu RP, “ Chattering-free Trajectory Tracking Robust Predefined-Time Sliding Mode Control for a Remotely Operated Vehicle,” Automation Electr Syst , pp. 1–19, 2020.doi:10.1007/s40313- 020-00599-4
[35] Ali SA, Pooyan AH, and Saad M, “ Two Novel Approaches of NTSMC and ANTSMC Synchronization for Smart Gritd Chaotic Systems,” Tech Econ smart grids Sustain Energ, pp. 3–14. 2018,doi:10.1007/s40866-018- 0050-0
[36] Pooyan AH, Ali SA, Saad M, and Hemanshu RP, “Two Novel Approaches of Adaptive Finite-Time Sliding Mode Control for a Class of Single-Input MultipleOutput Uncertain Nonlinear System. IET Cyber-systems and Robotics,” pp. 1–11. 2021. doi:10.1049/csy2.12012
[37] A.Zare, S.Z.Mirrezapour, M.Hallaji, A.Shoeibi, M.Jafari, N.Ghassemi, R.Alizadehsani and A.Mosavi, "Robust Adaptive Synchronization of a Class of Uncertain Chaotic Systems with Unknown Time-Delay," Applied Sciences, vol. 10, no. 24, p. 8875, 2020.
[38] T. Li, E. Thandapani, "Oscillation of solutions to odd-order nonlinear neutral functional differential equations, " Electron. J. Differential Equations,vol. 23,pp. 1–12, 2011.
[38] Z.S. Aghayan, A. Alfi, J.A.Tenreiro Machado, " Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation," Applied Mathematical Modelling, vol. 90, pp. 1035–1048,2021.
[39] Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952.
[40]J.H. Park, S.M. Lee, O.M. Kwon, "Adaptive synchronization of Genesio–Tesi chaotic system via a novel feedback control," Physics. Letters A, vol. 371, pp. 263–270,2007
[41] W.Pan, T.Li, MSajid, S.Ali, L.Pu, " Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics , vol. 10, no. 5, p. 712, 2022.