چاپرون ها، مولکول های حیاتی در میکروب¬ها
محورهای موضوعی : ژنتیک مولکولی میکروارگانیسم ها
1 - دانشجوی دکتری،گروه میکروبیولوژی، دانشکده علوم پایه، واحد شهرکرد، دانشگاه آزاد اسلامي، شهرکرد، ايران
کلید واژه: چاپرون, فولدینگ, استرس دمایی,
چکیده مقاله :
چاپرون¬های مولکولی پروتئین¬های بسیار حفاظت شده ای هستند که تاخوردگی مناسب سایر پروتئین¬ها را در داخل بدن ترویج می¬کنند. سیستمهای چاپرون متنوع به فولد کردن و انتقالات پروتئین، جمعآوری کمپلکسهای الیگومری، و بازیابی از باز شدن ناشی از استرس کمک میکنند. یک عملکرد اساسی چاپرون¬های مولکولی مهار فعل و انفعالات پروتئین غیرمولد با شناسایی و محافظت از سطوح آبگریز است که در هنگام تا شدن یا به دنبال استرس پروتئوتوکسیک در معرض قرار می¬گیرند. بنابراین چاپرون ها در سیستم¬های سلولی از اهمیت ویژه ای برخوردار هستند که در این مقاله مروری در مورد این مولکول¬ها و مکانیسم¬های عمل آن¬ها، بحث شده است. هم¬چنین در مورد تغییرات بیان ژن در شرایط اکسیداتیو در باکتری در راستای تحمل شرایط محیطی بحث خواهد شد.
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins inside the body. Diverse chaperone systems contribute to protein folding and translocation, assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit nonproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Therefore, chaperones are of special importance in cellular systems, which are discussed in this review article about these molecules and their mechanisms of action. Also, changes in gene expression in oxidative conditions in bacteria will be discussed in order to tolerate environmental conditions.
1. AlQuraishi MJCs. (2019). End-to-end differentiable learning of protein structure. 8(4):292-301. e3.
2. Bartlett AI, Radford SEJNs, biology m. (1009). An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. 16(6):582-8.
3. Balchin D, Hayer-Hartl M, Hartl FUJS. (2016). In vivo aspects of protein folding and quality control. 353(6294):aac4354.
4. Liutkute M, Samatova E, Rodnina MVJB. (2020). Cotranslational folding of proteins on the ribosome.10(1):97.
5. Chaudhary R, Atamian HS, Shen Z, Briggs SP, (2014). Kaloshian IJPotNAoS. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. 111(24):8919-24.
6. Henderson B, Allan E, Coates ARJI. (2006).Immunity. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. 74(7):3693-706.
7. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT. (1988). Georgopoulos CP, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly.333(6171):330-4.
8. Kaufman RJTiCB. (2004). A trip to the ER: coping with stress. 2004;14:20-8.
9. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau BJNrmcb. The Hsp70 chaperone network. 2019;20(11):665-80.
10. Luengo TM, Kityk R, Mayer MP, Rüdiger SGJMc. Hsp90 breaks the deadlock of the Hsp70 chaperone system. 2018;70(3):545-52. e9.
11. Balchin D, Hayer‐Hartl M, Hartl FUJFl. (2020). Recent advances in understanding catalysis of protein folding by molecular chaperones. 594(17):2770-81.
12. Hayer-Hartl M, Bracher A. (2016). Hartl FUJTibs. The GroEL–GroES chaperonin machine: a nano-cage for protein folding. 41(1):62-76.
13. Cohen FE, Kelly JWJN.(2003). Therapeutic approaches to protein-misfolding diseases. 426(6968):905-9.
14. Schirmer EC, Glover JR, Singer MA. (1996). Lindquist SJTibs. HSP100/Clp proteins: a common mechanism explains diverse functions. 21(8):289-96.
15. Burrows JA, Willis LK. (2000). Perlmutter DHJPotNAoS. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. 97(4):1796-801.
16. Yoshida H, Yoshizawa T, Shibasaki F. (2002). Kanazawa IJNod. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado–Joseph disease gene product with an expanded polyglutamine stretch. 10(2):88-99.
17. Roncarati D, Scarlato VJFmr (2017). Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. 41(4):549-74.
18. Slamti L, Livny J, Waldor MKJJob. (2007). Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant.189(2):351-62.
19. Kojima K, Nakamoto HJFl. (2007). A novel light-and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria.581(9):1871-80.
20. Shapiro RS, Cowen LEJM.(2012). Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. 3(5):10.1128/mbio. 00238-12.
21. Kortmann J, Narberhaus FJNrm. (2012). Bacterial RNA thermometers: molecular zippers and switches. 10(4): 255-65.
22. Waldminghaus T, Gaubig LC, Klinkert B, Narberhaus FJRb. (2009).The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements.6(4):455-63.
23. Dorman CJ, Corcoran CPJNAR. (2009). Bacterial DNA topology and infectious disease. 37(3):672-8.
24. Colonna B, Casalino M, Fradiani PA, Zagaglia C, Naitza S, Leoni L, et al.(1995). H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. 177(16):4703-12.
25. Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BKJJoBC. (2007). Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. 282(47):34077-84.
26. Elsholz AK, Michalik S, Zühlke D, Hecker M. (2010). Gerth UJTEJ. CtsR, the Gram‐positive master regulator of protein quality control, feels the heat. 29(21):3621-9.
27. Servant P, Grandvalet C, Mazodier PJPotNAoS. (2000). The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. 2000;97(7):3538-43.
28. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz GJJob. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. 2001;183(15):4562-70.
29. Bachmann BJJEc, cellular St, biology m. Derivations and genotypes of some mutant derivatives of Escherichia coli K‐12. 1996:2460.
30. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras FJMm. SoxR‐dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. 2001;39(4):960-72.
31. Patzer SI, Hantke KJJob. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. 1999;181(10):3307-9.
32. Zheng M, Wang X, Doan B, Lewis KA, Schneider TD, Storz GJJob. Computation-directed identification of OxyR DNA binding sites in Escherichia coli. 2001;183(15):4571-9.
33. Nunoshiba T, Hidalgo E, Amabile Cuevas C, Demple BJJob. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. 1992;174(19):6054-60.
34. Kambampati R, Lauhon CTJB. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. 1999;38(50):16561-8.
35. Maki Y, Yoshida H, Wada AJGtc. Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. 2000;5(12):965-74.