بررسی اثر تنش خشکی بر عملکرد، خصوصیات فتوسنتزی و رشد ریشه در لاین های امیدبخش و ارقام عدس (Lens culinaris)
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیسولماز عزیزی 1 , ناصر زارع 2 , پریسا شیخ زاده 3 , جوانشیر عزیزی مبصر 4 , رحمتالله کریمیزاده 5
1 - دانشجوی دکتری بیوتکنولوژی کشاورزی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 - استاد گروه تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - دانشیار گروه تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی، اردبیل، ایران.
4 - استادیار گروه مهندسی آب، دانشگاه محقق اردبیلی، اردبیل، ایران.
5 - استادیار پژوهش، موسسه تحقیقات کشاورزی دیم کشور، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کهگیلویه و بویراحمد، سازمان تحقیقات، آموزش و ترویج کشاورزی، گچساران، ایران.
کلید واژه: عملکرد بیولوژیکی, شاخص برداشت, فلورسانس کلروفیل, قند محلول.,
چکیده مقاله :
کم آبی یکی از عوامل اصلی محدودکننده رشد و تولید محصولات زراعی است. مراحل زایشی نسبتبه مراحل رویشی بیشتر مستعد خشک سالی هستند. در این آزمایش تأثیر تنش خشکی بر 12 لاین و رقم عدس بررسی شد. آزمایش بهصورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در شرایط تنش خشکی و نرمال اجرا شد. تنش خشکی از دوره گلدهی تا زمان برداشت اعمال شد. با توجه به نتایج، تنش خشکی موجب کاهش وزن و طول ریشه، کاهش عملکرد دانه، عملکرد بیولوژیکی، شاخص برداشت، ارتفاع و پارامترهای فلورسانس کلروفیل (Fm, Fv, Fv/Fm) و سبزینگی برگ شد؛ اما میزان قندهای محلول و F0 در اثر تنش افزایش یافت. از بین 12 لاین و ارقام عدس لاین-12، لاین-16، گچساران و سپهر بهعنوان بهترین لاین و ارقام از نظر صفات اندازه¬گیری شده بودند. این لاین و ارقام توانستند از کاهش عملکرد دانه و عملکرد بیولوژیکی نسبتبه سایر ارقام و لاین ها در شرایط تنش جلوگیری کنند. نتایج مرتبطبا همبستگی نیز نشان داد که صفاتی مانند طول و وزن ریشه، عملکرد فلورسانس، سبزینگی برگ، میزان قندهای محلول رابطه مستقیمی با میزان عملکرد دانه و شاخص برداشت داشتند. نتایج گروه بندی نیز نشان داد که در شرایط نرمال، برخیاز لاین ها تفاوت معنی داری با یکدیگر نشان ندادند. اما در شرایط تنش تفاوت معنی داری در این ارقام و لاین¬ها وجود داشت؛ بهطوریکه در گروه¬های متفاوتی قرار گرفتند. ارقام سپهر و گچساران و لاین های 12 و 16 در گروه برتر و متحمل به تنش قرار گرفتند. بنابراین لاین های 12 و 16 می توانند بهعنوان لاین های متحمل در آزمایش¬های ترویجی در شرایط مزرعه مورد استفاده قرار گیرند.
Water deficit is one of the main factors reducing the growth and productivity of crops. Reproductive stages are more susceptible to drought stress than vegetative stages. In this experiment, the effect of drought stress on 12 lines and lentil cultivars was investigated. The experiment was performed in a two-factor completely randomized design with three replications under drought and normal stress conditions. Drought stress was applied from flowering to harvest time. According to the results, drought stress decreased root weight and length, grain yield, biological yield, harvest index, height, chlorophyll fluorescence parameters (Fm, Fv, Fv / Fm), and leaf chlorophyll, but the amount of soluble sugars and F0 increased due to stress. Among 12 lines and lentil cultivars, line-12, line-16, Gachsaran, and Sepehr were measured as the best lines and cultivars in terms of traits. These lines and cultivars were able to prevent the reduction of grain yield and biological yield compared to other cultivars and lines. Correlation-related results also showed that traits such as root length and weight, fluorescence yield, leaf chlorophyll, and soluble sugar content were directly related to grain yield and harvest index. As well, the grouping results showed that under normal conditions some lines did not show significant differences from each other. But under stress conditions, there was a significant difference in these cultivars and lines. Therefore, they were in different groups. The Sepehr and Gachsaran cultivars and lines 12 and 16 were in the superior and stress-tolerant group. Therefore, lines 12 and 16 can be used as tolerant lines in extension experiments in field conditions.
• Abbasi, Z., and J. Bocianowski. 2021. Genotype by environment interaction for physiological traits in sugar beet (Beta vulgaris L.) parents and hybrids using additive main effects and multiplicative interaction model. European Food Research and Technology. 247: 3063–3081.
• Ahmed, I.M., H. Dai, W. Zheng, F. Cao, G. Zhang, D. Sun, and F. Wu. 2013. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry. 63: 49–60.
• Ali, A.M. 2020. Phenotyping of lentil genotypes for drought tolerance using polyethylene glycol. Journal of Natural Sciences. 10: 18145–18159.
• Allahmoradi, P., C. Mansourifar, M. Saidi, and S.J. Honarmand, 2013. Water deficiency and its effects on grain yield and some physiological traits during different growth stages in lentil (Lens culinaris L.) cultivar s. Annals of Biological Research. 4: 139–145.
• Anonymus. 2014. IPCC Synthesis Report. Contribution of working groups I. II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva IPCC 151.
• Arshad, M., B. Shaharoona, and T. Mahmood. 2008. Inoculation with Pseudomonas spp. containing ACC-Deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere. 18: 611–620. 57.
• Ashraf, S., A. Nazemi, and A. AghaKouchak. 2021. Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports. 11: 1–10.
• Awasthi, R., N. Kaushal, V. Vadez, N.C. Turner, J. Berger, K.H.M. Siddique, and H. Nayyar, 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology. 41: 1148–1167.
• Barnabás, B., K. Jäger, and A. Fehér, 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment. 31: 11–38.
• El, N., K. Rajendran, A. Smouni, N.E. Es-safi, N. Benbrahim, R. Mentag, and H. Nayyar. 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy. 1–27.
• Emadodin, I., T. Reinsch, and F. Taube, 2019. Drought and desertification in Iran. Hydrology 6.
• Fang, Y., Y. Du, J. Wang, A. Wu, S. Qiao, B. Xu, S. Zhang, K.H.M. Siddique, and Y. Chen, 2017. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Frontiers in Plant Science. 8: 1–14.
• Ge, T., N.B. Sun, L.P. Bai, C.L. Tong, and F.G. Sui. 2012. Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiologiae Plantarum. 34: 2179–2186.
• Gorbe, E., and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae. 138: 24–35.
• Karimi, V., E. Karami, and M. Keshavarz, 2018. Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture. 17: 1–15.
• Kell, D.B. 2011. Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. Annals of Botany. 108: 407–418.
• Khatun, M., S. Sarkar, F.M. Era, A.K.M.M. Islam, M.P. Anwar, S. Fahad, R. Datta, and A.K.M.A. Islam. 2021. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy. 11: 1–35.
• Kopta, T., A. Sekara, R. Pokluda, V. Ferby, and G. Caruso. 2020. Screening of chilli pepper genotypes as a source of capsaicinoids and antioxidants under conditions of simulated drought stress. Plants. 9: 364.
• Malamy, J.E. 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environment. 28: 67–77.
• Mishra, B.K., J.P. Srivastava, J.P. Lal, and M.S. Sheshshayee. 2016. Physiological and biochemical adaptations in lentil genotypes under drought stress. Russian Journal of Plant Physiology. 63: 695–708.
• Murchie, E.H., and T. Lawson. 2013. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany. 64: 3983–3998.
• Omokolo, ND., NG. Tsala, and PF. Djocgoue. 1996. Changes in carbohydrate, amino acid and phenol content in cocoa pods from three clones after infection with Phytophthora megakarya Bra. And Grif. Annul Botany London. 77: 153-158
• Ovenden, B., A. Milgate, L.J. Wade, G.J. Rebetzke, and J.B. Holland. 2018. Accounting for genotype-by-environment interactions and residual genetic variation in genomic selection for water-soluble carbohydrate concentration in wheat G3 genes. Genomes. 8: 1909–1919.
• Parkash, V., and S. Singh. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability. 12: 3945.
• Pour-Aboughadareh, A., R. Mohammadi, A. Etminan, L. Shooshtari, N. Maleki-Tabrizi, and P. Poczai. 2020. Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustain. 12: 1–14.
• Saddiq, M.S., X. Wang, S. Iqbal, M.B. Hafeez, S. Khan, A. Raza, J. Iqbal, M.M. Maqbool, S. Fiaz, and M.A. Qazi. 2021. Effect of water stress on grain yield and physiological characters of Quinoa genotypes. Agronomy. 11: 1934.
• Sehgal, A., K. Sita, J. Kumar, S. Kumar, and S. Singh. 2017. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science. 8: 1776.
• Taghipour, Z., R. Asghari Zakaria, N. Zare, and P. Shaikhzadeh Mosadegh. 2014. Using stress tolerance indices for evaluation of Aegilops triuncialis ecotypes for terminal drought tolerance. Journal of Crop Production.7: 70- 93. (In Persian).
• Tickoo, J.L., B. Sharma, S.K. Mishra, and H.K. Dikshit. 2005. Lentil (Lens culinaris) in India: present status and future perspectives. The Indian Journal of Agricultural Sciences. 75: 539–562.
• Vlachostergios, D.N., C. Noulas, A. Kargiotidou, D. Baxevanos, E. Tigka, C. Pankou, S. Kostoula, D. Beslemes, M. Irakli, M. Tziouvalekas, A. Lithourgidis, I. Tokatlidis, C. Dordas, and A. Mavromatis. 2021. Identification of the optimum environments for the high yield and quality traits of lentil genotypes evaluated in multi-location trials. Sustainability. 13(15): 8247.
• Xu, C., and D.I. Leskovar. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae. 183: 39–47.
• Yao, J., D. Sun, H. Cen, H. Xu, H. Weng, F. Yuan, and Y. He. 2018. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front. Plant Science. 9: 603.
• Zafar-ul-Hye, M., M.N. Akbar, Y. Iftikhar, M. Abbas, A. Zahid, S. Fahad, R. Datta, M. Ali, A.M. Elgorban, and M.J. Ansari. 2021. Rhizobacteria inoculation and caffeic acid alleviated drought stress in lentil plants. Sustainability. 13: 9603.
• Zandalinas, S.I., R. Mittler, D. Balfagón, V. Arbona, and A. Gómez-Cadenas. 2017. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. 2–15.
• Zhou, R., X. Yu, C.O. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biolology. 17: 1–13.
