Determining the effect of graphene quantum dots nanoparticles on the hardness and flexural strength of SiC
محورهای موضوعی : Manufacturingحسین کیا 1 , puya pirali 2 , حمیدرضا بهاروندی 3
1 -
2 - Faculty of Materials and Manufacturing Technologies,
Malek Ashtar University of Technology, Tehran, Iran
3 - پژوهشکده مکانیک - دانشکده مهندسی مواد و فناوری های ساخت - دانشگاه صنعتی مالک اشتر
کلید واژه: Silicon carbide, Graphene quantum dots, Hardness, Flexural strength ,
چکیده مقاله :
Silicon carbide is one of the most widely used ceramics due to its high compressive strength, low cost and easy access. However, high brittleness is one of the most important problems of these ceramics, which can be decreased by adding additives. In this article, the effect of adding graphene quantum dots nanoparticles has been determined. This article steps include; design of experiment, determining the best state of pressure, humidity and grinding time, and finally manufacturing samples with different percentages of graphene quantum dots up to 1% and determining the mechanical properties of the samples. The results show that in humidity of 7%, grinding time of 1 hour and pressure of 120 bar, raw compressive strength as well as raw flexural strength has its maximum value. Also adding graphene quantum dots to silicon carbide improves the mechanical properties of sintered samples to some critical limit due to the locking of grain boundaries and through mechanisms such as crack bridging and after that, it leads to a decrease in the properties. Besides, the best properties (hardness 27.90 GPa, Young’s modulus 450.64 GPa and flexural strength 421 MPa) are obtained when 0.6% of GQDs is added.
[1] W. Chi, D. Jiang, Z. Huang, S. Tan, Sintering behavior of porous SiC ceramics, Ceramics International, 30(6) (2004) 869-874.
[2] B. K. Jang, Y. Sakka, Thermophysical properties of porous SiC ceramics fabricated by pressureless sintering, Science and Technology of Advanced Materials, 8(7-8) (2007) 655.
[3] S. Kultayeva, J.-H. Ha, R. Malik, Y.-W. Kim, K.J. Kim, Effects of porosity on electrical and thermal conductivities of porous SiC ceramics, Journal of the European Ceramic Society, 40(4) (2020) 996-1004.
[4] B.M. Kumar, Y.-W. Kim, D.-S. Lim, W.-S. Seo, Influence of small amount of sintering additives on unlubricated sliding wear properties of SiC ceramics, Ceramics International, 37(8) (2011) 3599-3608.
[5] C. Li, S. Li, D. An, Z. Xie, Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C, Ceramics International, 46(8) (2020) 10142-10146.
[6] H. Liang, X. Yao, J. Zhang, X. Liu, Z. Huang, Low temperature pressureless sintering of α-SiC with Al2O3 and CeO2 as additives, Journal of the European Ceramic Society, 34(3) (2014) 831-835.
[7] K. Negita, Effective sintering aids for silicon carbide ceramics: reactivities of silicon carbide with various additives, Journal of the American Ceramic Society, 69(12) (1986) C‐308-C‐310.
[8] N. Song, H.-b. Zhang, H. Liu, J.-z. Fang, Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering, Ceramics International, 43(9) (2017) 6786-6790.
[9] T.T. Xu, S. Cheng, L.Z. Jin, K. Zhang, T. Zeng, High‐temperature flexural strength of SiC ceramics prepared by additive manufacturing, International Journal of Applied Ceramic Technology, 17(2) (2020) 438-448.
[10] T. Zhang, Z. Zhang, J. Zhang, D. Jiang, Q. Lin, Preparation of SiC ceramics by aqueous gelcasting and pressureless sintering, Materials Science and Engineering: A, 443(1-2) (2007) 257-261.
[11] T. Koyanagi, Y. Katoh, T. Nozawa, L.L. Snead, S. Kondo, C.H. Henager Jr, M. Ferraris, T. Hinoki, Q. Huang, Recent progress in the development of SiC composites for nuclear fusion applications, Journal of Nuclear Materials, 511 (2018) 544-555.
[12] J. Das, P. Patel, J.J. Reddy, V.B. Prasad, Microstructure and mechanical properties of a SiC containing advanced structural ceramics, International Journal of Refractory Metals and Hard Materials, 84 (2019) 105030.
[13] M. Lopez-Robledo, A. Gómez-Martín, J. Ramírez-Rico, J. Martínez-Fernández, Sliding wear resistance of porous biomorphic sic ceramics, International Journal of Refractory Metals and Hard Materials, 59 (2016) 26-31.
[14] M. Bondioli, C. Santos, K. Strecker, E. Lima, M.P. da Silva, R. Magnago, Oxidation behavior of LPS-SiC ceramics sintered with AlN/Y2O3 as additive, International Journal of Refractory Metals and Hard Materials, 42 (2014) 246-254.
[15] A. Kovalčíková, P. Kurek, J. Balko, J. Dusza, P. Šajgalík, M. Mihaliková, Effect of the counterpart material on wear characteristics of silicon carbide ceramics, International Journal of Refractory Metals and Hard Materials, 44 (2014) 12-18.
[16] J. Zhang, D. Jiang, Q. Lin, Z. Chen, Z. Huang, Properties of silicon carbide ceramics from gelcasting and pressureless sintering, Materials & Design (1980-2015), 65 (2015) 12-16.
[17] Y.H. Kim, Y.W. Kim, K.J. Kim, Electrically conductive SiC ceramics processed by pressureless sintering, International Journal of Applied Ceramic Technology, 16(2) (2019) 843-849.
[18] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A., 2005. Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065),197-200.
[19] Wang, K., Wang, Y., Fan, Z., Yan, J., & Wei, T.. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Materials Research Bulletin, 46 (2011), 315-318.
[20] Walker, L. S., Marotto, V. R., Rafiee, M. A., Koratkar, N., & Corral, E. L. (2011). Toughening in graphene ceramic composites. ACS nano, 5(4), 3182-3190.
[21] Fan, Yuchi, Lianjun Wang, Jianlin Li, Jiaqi Li, Shikuan Sun, Feng Chen, Lidong Chen, and Wan Jiang. "Preparation and electrical properties of graphene nanosheet/Al2O3 composites." Carbon 48, no. 6 (2010): 1743-1749.
[22] Belmonte, Manuel, Andrés Nistal, Pierre Boutbien, Benito Román-Manso, María I. Osendi, and Pilar Miranzo. "Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers." Scripta Materialia 113 (2016): 127-130.
[23] H. Porwal, P. Tatarko, R. Saggar, S. Grasso, M. Kumar Mani, I. Dlouh´y, J. Dusza,M.J. Reece, “Tribological properties of silica-graphene nano-plateletcomposites”, Ceram. Int. 40 (2014), 12067–12074.
[24] Ramirez, C., L. Garzón, P. Miranzo, M. I. Osendi, and C. Ocal. "Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy." Carbon 49, no. 12 (2011): 3873-3880.
[25] Rutkowski, Paweł, Aleksandra Dubiel, Wojciech Piekarczyk, Magdalena Ziąbka, and Ján Dusza. "Anisotropy in thermal properties of boron carbide–graphene platelet composites." Journal of the European Ceramic Society 36, no. 12 (2016): 3051-3057.
[26] Kovalčíková, A., R. Sedlák, P. Rutkowski, and J. Dusza. "Mechanical properties of boron carbide+ graphene platelet composites." Ceramics International 42, no. 1 (2016): 2094-2098.
[27] Kvetková, Lenka, Annamária Duszová, Pavol Hvizdoš, Ján Dusza, Péter Kun, and Csaba Balázsi. "Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites." Scripta Materialia 66, no. 10 (2012): 793-796.
[28] Porwal, Harshit, Salvatore Grasso, and M. J. Reece. "Review of graphene–ceramic matrix composites." Advances in Applied Ceramics 112, no. 8 (2013): 443-454.
[29] Miranzo, Pilar, Cristina Ramírez, Benito Román-Manso, Luis Garzón, Humberto R. Gutiérrez, Mauricio Terrones, Carmen Ocal, M. Isabel Osendi, and Manuel Belmonte. "In situ processing of electrically conducting graphene/SiC nanocomposites." Journal of the European Ceramic Society 33, no. 10 (2013): 1665-1674.
[30] Sedlák, Richard, Alexandra KovalĿíková, Vladimír Girman, Erika Múdra, Paweł Rutkowski, Aleksandra Dubiel, and Ján Dusza. "Fracture characteristics of SiC/graphene platelet composites." Journal of the European Ceramic Society 37, no. 14 (2017): 4307-4314.
[31] Grigoriev, S., P. Peretyagin, Antón Smirnov, W. Solis, Luis A. Díaz, Adolfo Fernández, and Ramón Torrecillas. "Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics." Journal of the European ceramic society 37, no. 6 (2017): 2473-2479.
[32] Wang, YongChao, YinBo Zhu, ZeZhou He, and HengAn Wu. "Multiscale investigations into the fracture toughness of SiC/graphene composites: Atomistic simulations and crack-bridging model." Ceramics International 46, no. 18 (2020): 29101-29110.
[33] Petrus, Mateusz, J. Wozniak, Tomasz Cygan, B. Adamczyk-Cieslak, Marek Kostecki, and Andrzej Olszyna. "Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene." Ceramics International 43, no. 6 (2017): 5007-5013.
[34] Román-Manso, Benito, Yoan Chevillotte, M. Isabel Osendi, Manuel Belmonte, and Pilar Miranzo. "Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets." Journal of the European Ceramic Society 36, no. 16 (2016): 3987-3993.
[35] Belmonte, Manuel, Andrés Nistal, Pierre Boutbien, Benito Román-Manso, María I. Osendi, and Pilar Miranzo. "Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers." Scripta Materialia 113 (2016): 127-130.
[36] Huang, Yihua, Dongliang Jiang, Xianfeng Zhang, Zhenkui Liao, and Zhengren Huang. "Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering." Journal of the European Ceramic Society 38, no. 13 (2018): 4329-4337.
[37] Meng, Qinghua, Bo Li, Teng Li, and Xi-Qiao Feng. "A multiscale crack-bridging model of cellulose nanopaper." Journal of the Mechanics and Physics of Solids 103 (2017): 22-39.
[38] Meng, Qinghua, and Tiejun Wang. "An improved crack-bridging model for rigid particle-polymer composites." Engineering Fracture Mechanics 211 (2019): 291-302.
[39] Belmonte, Manuel, Pilar Miranzo, and M. Isabel Osendi. "Contact damage resistant SiC/graphene nanofiller composites." Journal of the European Ceramic Society 38, no. 1 (2018): 41-45.
[40] Cheng, Yehong, Ping Hu, Shanbao Zhou, Xinghong Zhang, and Wenbo Han. "Using macroporous graphene networks to toughen ZrC–SiC ceramic." Journal of the European Ceramic Society 38, no. 11 (2018): 3752-3758.
[41] Zhang, Zhipan, Jing Zhang, Nan Chen, and Liangti Qu. "Graphene quantum dots: an emerging material for energy-related applications and beyond." Energy & Environmental Science 5, no. 10 (2012): 8869-8890.
[42] Sengupta, Shuvam, Somyajit Pal, Aritra Pal, Subhajit Maity, Kunal Sarkar, and Madhusudan Das. "A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs)." Inorganica Chimica Acta (2023): 121677.
[43] Fang, Cong, Weining Lei, Tianle Xu, Haoyu Zhong, Bin He, Linglei Kong, and Yiliang He. "Effect of reverse pulse current density on microstructure and properties of supercritical Ni-GQDs nanocomposite coatings." Electrochemistry Communications 160 (2024): 107680.
[44] Huang, Yong, Danping Wang, Yali Wei, Xin Dong, Rong Yang, Haoyun Li, Minqi Wei, Jie Yu, Lisheng Zhong, and Yunhua Xu. "Advances in synthesis of the graphene quantum dots from varied raw materials." Arabian Journal of Chemistry (2023): 105533.
[45] Huang, Yong, Danping Wang, Yali Wei, Xin Dong, Rong Yang, Haoyun Li, Minqi Wei, Jie Yu, Lisheng Zhong, and Yunhua Xu. "Advances in synthesis of the graphene quantum dots from varied raw materials." Arabian Journal of Chemistry (2023): 105533.
[46] Rao, Akshatha A., Santhosh Narendhiran, and Manoj Balachandran. "Fossil fuel derived GQD as a photosensitizer in dye-sensitized solar cells." Materials Letters 357 (2024): 135692.
[47] Gao, Feng, Yun-hao Zang, Yan Wang, Chun-qian Guan, Jiang-ying Qu, and Ming-bo Wu. "A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste." New Carbon Materials 36, no. 1 (2021): 34-48.
[48] Kansara, Vrushti, Sanjay Tiwari, and Mitali Patel. "Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications." Colloids and Surfaces B: Biointerfaces 217 (2022): 112605.
