Application of Mineral-Based Materials in Thermal Protective Textiles
محورهای موضوعی : Polymer, Composites and Polymerization Processes
1 - Department of Mining and Petroleum Engineering, ST.C, Islamic Azad University, Tehran, Iran
کلید واژه: flame retardancy, mineral nanoparticles, layered silicates, polymeric nanocomposites, protective textiles,
چکیده مقاله :
The rapid expansion of advanced technologies and industrial processes has heightened human exposure to fire hazards and thermal risks, underscoring the urgent need for enhanced thermal protective textiles. Firefighter turnout gear and protective clothing for high-risk mining workers such as those in sulfur and coal mines serve as critical defensive barriers, delivering robust flame resistance while preserving optimal weight and wearability. Layered silicate nanoparticles, including mica, montmorillonite, and vermiculite, alongside lightweight minerals like perlite and dolomite, exhibit distinctive flame-retardant properties, thermal stability, and barrier effects, positioning them as promising additives for advanced protective textiles. This review systematically evaluates the physicochemical characteristics of key fire-resistant minerals, explores methodological strategies for incorporating their nanoparticles into polymeric matrices and textile structures, and identifies primary technical challenges hindering commercial viability. Integrating insights from mineralogy, nanotechnology, and textile engineering, this study delineates pathways for developing next-generation lightweight, flame-retardant, multifunctional protective textiles optimized for operational safety, wearer comfort, and concurrent EMI shielding in firefighter and mining personnel apparel.
The rapid expansion of advanced technologies and industrial processes has heightened human exposure to fire hazards and thermal risks, underscoring the urgent need for enhanced thermal protective textiles. Firefighter turnout gear and protective clothing for high-risk mining workers such as those in sulfur and coal mines serve as critical defensive barriers, delivering robust flame resistance while preserving optimal weight and wearability. Layered silicate nanoparticles, including mica, montmorillonite, and vermiculite, alongside lightweight minerals like perlite and dolomite, exhibit distinctive flame-retardant properties, thermal stability, and barrier effects, positioning them as promising additives for advanced protective textiles. This review systematically evaluates the physicochemical characteristics of key fire-resistant minerals, explores methodological strategies for incorporating their nanoparticles into polymeric matrices and textile structures, and identifies primary technical challenges hindering commercial viability. Integrating insights from mineralogy, nanotechnology, and textile engineering, this study delineates pathways for developing next-generation lightweight, flame-retardant, multifunctional protective textiles optimized for operational safety, wearer comfort, and concurrent EMI shielding in firefighter and mining personnel apparel.
[1] V. N. Mokoana, J. K. O. Asante, and O. J. Okonkwo, “A review on volatilization of flame retarding compounds from polymeric textile materials used in firefighter protective garment,” J. Fire Sci., vol. 41, no. 4, pp. 345–367, 2023, doi: 10.1177/07349041231171349.
[2] M. F. Cuenca-Lozano and C. O. Ramírez-García, “Occupational hazards in firefighting: Systematic literature review,” Saf. Health Work, vol. 14, no. 1, pp. 1–10, 2023, doi: 10.1016/j.shaw.2023.01.005.
[3] P. H. Nadeau and G. Brown, “Crystal structures of clay minerals and related phyllosilicates,” Philos. Trans. R. Soc. London, Ser. A, vol. 311, no. 1517, pp. 221–240, Jun. 1984, doi: 10.1098/rsta.1984.0025.
[4] N. Ashrafi, R. Dabiri, and A. Jahangiri, “Some chemical variations in biotite, phlogopite, and muscovite, considering their tectonic setting,” Geopersia, vol. 14, no. 2, pp. 307–325, Nov. 2024, doi: 10.22059/geope.2024.373882.648749.
[5] J. T. Tanner, “Mica,” in Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. Wiley-VCH, 2020, doi: 10.1002/0471238961.1309030120011414.a01.
[6] N. Andraschek, A. J. Wanner, C. Ebner, and G. Riess, “Mica/epoxy-composites in the electrical industry: Applications, composites for insulation, and investigations on failure mechanisms for prospective optimizations,” Polymers, vol. 8, no. 5, p. 201, May 2016, doi: 10.3390/polym8050201.
[7] M. Wilson, “Mica mineral specimen,” Wikimedia Commons, 2012. [Online]. Available: https://commons.wikimedia.org/wiki/File:Mica_3157.jpg. Accessed: Dec. 17, 2025.
[8] G. K. Dedzo and C. Detellier, “Clay minerals—Ionic liquids, nanoarchitectures, and applications,” Adv. Funct. Mater., 2018, doi: 10.1002/adfm.201703845.
[9] G. Rühlicke and E. Niederbudde, “Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method,” Clay Miner., vol. 20, no. 3, 1985, doi: 10.1180/claymin.1985.020.3.02.
[10] N. Anwar, M. Ishtiaq, and A. Mahmood, “Dielectric properties of polymer/clay nanocomposites,” J. Reinf. Plast. Compos., 2021, doi: 10.1177/0967391120953250.
[11] S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: A review from preparation to processing,” Prog. Polym. Sci., vol. 28, no. 11, pp. 1539–1641, 2003, doi: 10.1016/j.progpolymsci.2003.08.002.
[12] IbrZulya, “Montmorillonite specimen from Dashsalakhli Field, Gazakh Region, Azerbaijan,” Wikimedia Commons, 2017. [Online]. Available: https://commons.wikimedia.org/wiki/File:Montmorillonite1.jpg. Accessed: Dec. 17, 2025.
[13] J. Phipps, “Engineering minerals for performance applications: An industrial perspective,” Clay Miner., vol. 49, no. 1, 2014, doi: 10.1180/claymin.2014.049.1.01.
[14] P. B. Malla, “Vermiculites,” in Soil Mineralogy with Environmental Applications, J. B. Dixon and D. G. Schulze, Eds. SSSA, 2002, doi: 10.2136/sssabookser7.c16.
[15] M. Valášková and G. S. Martynková, “Vermiculite: Structural properties and examples of the use,” in Clay Minerals in Nature, Intech, 2012, doi: 10.5772/51237.
[16] A. Sethurajaperumal et al., “A thermally insulating vermiculite nanosheet–epoxy nanocomposite paint as a fire-resistant wood coating,” Nanoscale Adv., 2021, doi: 10.1039/D1NA00207D.
[17] Wikimedia Commons contributors, “Vermiculite mineral specimen (USGOV),” Wikimedia Commons. [Online]. Available: https://commons.wikimedia.org/wiki/File:VermiculiteUSGOV.jpg. Accessed: Dec. 17, 2025.
[18] H. A. Craddock, “Perlite,” in Metals, Inorganic Salts and Other Inorganics, Wiley, 2018, doi: 10.1002/9781119244233.ch5.
[19] M. Măntulescu, “The use of perlite in civil engineering applications,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1242, no. 1, 2022, doi: 10.1088/1757-899X/1242/1/012022.
[20] L. Gouissem, “High-density polyethylene composites with treated perlite: Thermal and mechanical properties,” Polymer Open J., 2025, doi: 10.22063/poj.2025.35648.1346.
[21] Wikimedia Commons contributors, “Perlite mineral sample,” Wikimedia Commons, Public Domain. [Online]. Available: https://commons.wikimedia.org/wiki/Perlite. Accessed: Dec. 17, 2025.
[22] N. H. Ahmad Shukeri, “The important characteristic and properties of dolomite minerals and potential uses as bioceramics: An overview,” J. Biomimetics Biomater. Biomed. Eng., vol. 67, pp. 63–80, 2025, doi: 10.4028/p-On0IPW.
[23] I. Gusain et al., “Study of concrete mix by adding dolomite in conventional concrete as partial replacement with cement,” Mater. Today: Proc., 2023, doi: 10.1016/j.matpr.2022.09.583.
[24] C. Rodríguez-Navarro, K. Kudłacz, and E. Ruiz-Agudo, “The mechanism of thermal decomposition of dolomite,” Am. Mineral., vol. 97, no. 1, pp. 38–51, 2012, doi: 10.2138/am.2011.3813.
[25] Wikimedia Commons contributors, “Dolomite mineral specimen,” Wikimedia Commons, Public Domain. [Online]. Available: https://commons.wikimedia.org/wiki/File:Dolomite.jpg. Accessed: Dec. 17, 2025.
[26] S. Mandal et al., “Characterization and modeling of thermal protective and thermo-physiological comfort performance of polymeric textile materials—A review,” Materials, vol. 14, no. 9, 2021, doi: 10.3390/ma14092397.
[27] D.-G. Gao et al., “Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric,” Compos. Part B, vol. 77, 2015, doi: 10.1016/j.compositesb.2015.03.061.
[28] S. Abidi et al., “Impact of perlite, vermiculite and cement on the thermal conductivity of plaster composites,” Compos. Part B, vol. 68, pp. 392–400, 2015, doi: 10.1016/j.compositesb.2014.07.030.
[29] A. Fajdek-Bieda and A. Wróblewska, “The use of natural minerals as reinforcements in mineral-reinforced polymers,” Polymers, vol. 16, no. 17, 2024, doi: 10.3390/polym16172505.
[30] A. R. Horrocks and W. Liu, “Recent developments and challenges in flame retardation of textiles and fibres,” Materials China, vol. 34, no. 9, pp. 659–674, 2015.
[31] A. Fahami et al., “Mica-based multilayer nanocoating as highly effective flame retardant and smoke suppressant,” ACS Appl. Mater. Interfaces, vol. 12, no. 17, pp. 19353–19363, 2020, doi: 10.1021/acsami.0c02397.
[32] J. A. De Lima et al., “Morphology and mechanical properties of cellulose acetate/organic montmorillonite nanocomposites,” J. Appl. Polym. Sci., vol. 124, no. 6, pp. 4390–4399, 2011, doi: 10.1002/app.35517.
[33] S. Jiang et al., “Effect of expanded vermiculite on fire resistance of waterborne acrylic coatings,” Polymers, vol. 16, no. 16, p. 2302, 2024, doi: 10.3390/polym16162302.
[34] M. N. Kolak and M. Oltulu, “Effect of expanded perlite addition on thermal conductivity and mechanical properties of bio-composites,” J. Build. Eng., vol. 71, p. 106515, 2023, doi: 10.1016/j.jobe.2023.106515.
[35] Q. F. Gillani et al., “Effect of dolomite clay on thermal performance of intumescent fire retardant coatings,” Procedia Eng., vol. 148, pp. 146–150, 2016, doi: 10.1016/j.proeng.2016.06.505.
[36] H. Diler et al., “Effect of vermiculite on flame retardancy of wood plastic composites,” BioResources, vol. 19, no. 1, pp. 183–194, 2024, doi: 10.15376/biores.19.1.183-194.
[37] H. Ismail, S. M. Sapuan, and R. A. Ilyas, Mineral-Filled Polymer Composites, CRC Press, 2022, doi: 10.1201/9781003220947.
[38] K. Shahapurkar et al., “Polymer composites as electromagnetic interference shielding materials,” Polym. Polym. Compos., vol. 30, no. 4, 2022, doi: 10.1177/09673911221102127.
[39] A. Leszczyńska et al., “Thermal stability of polymer/montmorillonite nanocomposites,” Thermochim. Acta, vol. 454, no. 1, pp. 1–22, 2007, doi: 10.1016/j.tca.2006.11.003.
[40] M. Al-Ali AlMa'adeed, G. Ozerkan, R. Kahraman, and S. Rajendran, "Life cycle assessment of particulate recycled low density polyethylene and recycled polypropylene reinforced with talc and fiberglass," Key Eng. Mater., vols. 471-472, pp. 999-1004, 2011, doi: 10.4028/www.scientific.net/KEM.471-472.999.
