برآورد پارامترهای ژنتیکی صفات مختلف مرتبط با عملکرد در تودههای گندم نان تحت دو شرایط متفاوت رطوبتی
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعی
فاطمه باوندپوری
1
,
عزت اله فرشادفر
2
,
محسن فرشادفر
3
1 - دانش آموخته دکتری اصلاح نباتات، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی کرمانشاه، کرمانشاه، ایران.
2 - استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی کرمانشاه، کرمانشاه، ایران.
3 - دانشیار گروه کشاورزی دانشگاه پیام نور، تهران، ایران.
کلید واژه: تنوع ژنتیکی, سود ژنتیکی, وراثتپذیری, همبستگی, Triticum aestivum.,
چکیده مقاله :
در پژوهشی بهمنظور بررسی 25 توده گندم نان از نظر پارامترهای ژنتیکی و وراثتپذیری، صفات مورفوفیزیولوژیک، فنولوژیک و بیوشیمیایی، آزمایشی در سال زراعی 1396-1395 در قالب طرح بلوکهای کامل تصادفی با سه تکرار در دو شرایط دیم و آبیاری آخر فصل در مزرعه تحقیقاتی دانشگاه رازی به اجرا درآمد. نتایج تجزیه واریانس نشان داد که تنوع بالایی در بین تودههای گندم نان برای اکثر صفات وجود داشت. در شرایط آبیاری آخر فصل، صفات وزن ¬هزاردانه، تعداد دانه در سنبله، ارتفاع گیاه، طول پدانکل، طول پنالتیمیت، تعداد سنبلچه در سنبله، شاخص برداشت، محتوی آب نسبی برگ و راندمان مصرف آب همبستگی مثبت و معنیداری با عملکرد و در شرایط دیم، صفات وزن هزاردانه، عملکرد چف، ارتفاع گیاه، طول اکستراژن، طول پدانکل، طول پنالتی¬میت، تعداد سنبلچه زایا، تعداد سنبلچه در سنبله، وزن دانه در سنبله، شاخص برداشت، راندمان مصرف آب، سرعت پرشدن دانه، فعالیت آنزیمهای سوپراکسیددیسموتاز و آسکوربیکپراکسیداز همبستگی مثبت و معنیدار با عملکرد داشتند. در شرایط آبیاری آخر فصل با توجه به سودژنتیکی علاوه بر عملکرد، صفات فعالیت آنزیمهای کاتالاز، سوپراکسیددیسموتاز، آسکوربیکپراکسیداز، محتوی پرولین، محتوی پروتئین محلول، فعالیت آنزیم پراکسیداز و راندمان مصرف آب و در شرایط دیم صفات فعالیت آنزیمهای کاتالاز، سوپراکسیددیسموتاز، آسکوربیکپراکسیداز، محتوی پرولین، آب حفظشده برگ و طول اکستراژن دارای بیشترین سودژنتیکی بودند. براساس صفات مورفوفیزیولوژیکی، فنولوژیکی و بیوشیمیایی در شرایط دیم و آبیاری آخر فصل، تودههای 10، 15 و 7 به عنوان تودههای برتر شناسایی شدند. بنابراین میتوان از طریق گزینش و دورگگیری اقدام به تولید ارقام مطلوب نمود.
Accourding to the research to investigate 25 bread wheat accessions in terms of genetic parameters and heritability, morphophysiological, phenological and biochemical traits, an experiment was conducted in the 2016-2017 crop year in a randomized complete block design with three replications in rainfed and irrigation at the end of the growing season conditions were carried out in the research field of Razi University. The results of variance analysis showed that there was a high diversity among wheat accessions for most of the traits. At the end of growing season irrigation, thousand seed weight, number of seeds per spike, plant height, peduncle length, mitt penalty length, number of spikelets per spike, harvest index, relative water content and water use efficiency traits showed a positive and significant correlation with yield and in rainfed conditions the traits of thousand seed weight, chaff yield, plant height, xteragen length, peduncle length, mitt penalty length, number of fertile spikelets, number of spikelets per spike, grain spike weight, harvest index, water use efficiency, rate of filing seed, activity of superoxide dismutase and ascorbic peroxidase enzymes had positive and significant correlation with yield. At the end of growing season irrigation, according to genetic gain, in addition to yield, the traits of activity catalase, superoxide dismutase, ascorbic peroxidase enzymes, proline content, soluble protein content, peroxidase enzyme activity and water use efficiency and in rainfed conditions, traits of activity of catalase, superoxide dismutase, ascorbic peroxidase enzymes, proline content, rlative water protective and xteragen length had the highest genetic gain. Based on morphophysiological, phenological and biochemical traits in rainfed and irrigation at the end of the growing season conditions, accessions 10, 15 and 7 were identified as superior accessions. Therefore, it is possible to produce desirable cultivars through selection and hybridization.
• Ahmed, K., G.H. Shabbir, M. Ahmed, and K. Nawaz Shah. 2020. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of the Total Environment. 729: 1-14.
• Akbari, S., M. Kafi, and S. Rezvan-Beidokhti. 2016. The effects of drought stress on yield, yield components and antioxidant of two garlic (Allium sativum L.) ecotypes with different planting densities. Journal Agroecol. 8l: 95-106. (In Persian).
• Al-Naggar, A.M.M., M.A.E. Abd El-Shafi, M.H. El-Shal, and A.H. Anany. 2020c. Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yieldand qualitytraits. Plant Archives. 20(1): 3487-3504.
• Amiri, R. 2019. Genetic analysis of iron and zinc concentrations of bread wheat. Ph.D. Thesis in Plant Breeding. Razi University Campus of Agriculture and Natural Resources. (In Persian).
• Amiri, R., S. Bahraminejad, and S. Jalali-Honarmand. 2013. Effect of terminal drought stress on grain yield and some morphological traits in 80 bread wheat genotypes. International Journal of Agriculture and Crop Sciences. 5(10): 1145.
• Anonymus. 2019. FAO. FAOSTAT Database. Available online at: http://www.fao.org/faostat/en/#data/QC.
• Ashrafi-Parchin, R., A. Najaphi, E. Farshadfar, and S. Hokmalipour. 2011. Evaluation of wheat Genotypes under drought stress based on phenological traits. International Journal of Agriculture and Crop Sciences. 3(1): 12-19.
• Bakhtiar, F., H. Ghazvini, and M. Aghaee-Sarbarzeh. 2021. Evaluation of variability of agronomic and morpho-logical traits in doubled haploid wheat lines using multivariate statistical methods. Applied Research in Field Crops. 34(1): 71-92. (In Persian).
• Barrs, H.D. 1968. Determination of water deficits in plant tissues. In: T.T. Kozolvski (Ed.). Water Deficits and Plant Growth. Academic Press. 1: 235–368.
• Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 268-282.
• Bates, L., R. Waldren, and I. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
• Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44: 276-287.
• Blum, A. 2005. Use of PEG to induce and control plant water deficit in experimentalhydroponics culture. www.plantstress.com/method/PEC.htm.
• Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principles of protein dyebinding. Analytical Biochemistry. 72: 248-254.
• Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Mare, A. Tondelli, and A.M. Santaca. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research. 105: 1-14.
• Chakraborty, R., and S. Chakraborty. 2010. Genetic variability and correlation of some morphometric traits with grain yield in bold grained rice (Oryza sativa L.) gene pool of Barak valley. American-Eurasian Journal of Sustainable Agriculture. 4(1): 26-29.
• Chance, B., and A.C. Maehly. 1995. Assay of catalase and peroxidase. In: S.P. Culowic, and N.O. Kaplan (eds). Methods in enzymology Volume: 2. Academic Press. Inc. NewYork. PP. 764-765.
• Chowdhry, M.A., and I. Khaliq. 1992. Coheritability among different economic traits in bread wheat. Pakistan Journal Agricultural of Sciences. 29(2):185-187.
• Clarke‚ C.M., and T.N. Mccaig. 1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Science. 22: 503-506.
• Egert, M., and M. Tevini. 2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alliu choenoprasum). Enviromental Experimental Botany. 48: 43-49.
• El Fatehi, S., G. Béna, L. Sbabou, A. Filali-Maltouf, and M. Ater. 2016. Genetic diversity of morrocan bitter vetch Vicia ervilia (L.) Willd. Landraces revealed by morphological and SSR markers. Australian Journal of Crop Science. 10:717–725.
• El Jaafari S., R. Paul, P. Lepoivre, J. Semal, and E. Laitat. 1993. Résistance à la sécheresse etréponse à l’acide abscissique: Analyse d’une approche synthétique. Cahiers Agricultures. 2: 256-263.
• Estehghari, M.R., and E. Farshadfar. 2014. Evaluation of phenotypic variability, genetic parameters, heritability and genetic gain in bread wheat genotypes under rainfed conditions. International Journal of Biosciences. 4(12): 193-201.
• Farshadfar, A. 2010. New topics in biometric genetics. Islamic Azad University Publications, pp, 722. (In Persian).
• Farshadfar, A. 2018. Genetic modification of environmental stresses. Vosough Publications. First Edition, pp, 844. (In Persian).
• Farshadfar, E., A. Sheibanirad, and M. Soltanian. 2014. Screening landraces of bread wheat genotypes for drought tolerance in the field and laboratory. International Journal of Farming and Allied Sciences. 3(3): 304-311.
• Gomez-Coronado, F., M.J. Poblaciones, A.S. Almeida, and I. Cakmak. 2016. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil. 401: 331–346.
• Guo, X.Y., X.S. Zhang, and Z.Y. Huang. 2010. Drought tolerance in three hybrid poplar clones submitted to different watering regimes. Journal of Plant Ecology. 3(2): 79-87.
• Hashemi-Nasab, H. 2011. Study of several biochemical criteria of drought resistance in wheat cultivars and their relationship with yield. Master Thesis in Plant Breeding. Shiraz University. (In Persian).
• Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 189-198.
• Heidari, Sh., P. Heidari, R. Azizinezhad, A. Etminan, and M. Khosroshahli. 2020. Assessment of genetic variability, heritability and genetic advance for agro-morphological and some in-vitro related-traits in durum wheat. Bulgarian Journal of Agricultural Science. 26(1): 120–127.
• Lichtenthaler, K. and A.R. Welburn. 1983. Determination of Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. Biochemical Society Transactions, 11,591-592. http://dx.doi.org/10.1042/bst0110591.
• Imam, Y. 2008. Cereal cultivation. Shiraz University Press. Third edition, pp, 190. (In Persian).
• Jowkar, F., A. Masomi-Asl, and R. Karimizadeh. 2020. Evaluation of morphophysiological traits and drought tolerance indices in some advanced durum wheat (Triticum durum L.) lines under supplementary irrigation and irrigation conditions. Journal of Plant Ecophysiology. 12(42): 162-173. (In Persian).
• Kamalizadeh, M., A. Hoseinzadeh, and H. Zeinalikhanghah. 2013. Evaluation of inheritance for some quantitative traits in bread wheat using generation mean analysis under water deficit condition. Iranian Journal of Field Crop Science. 44: 317–326.
• Karimi-dastgerdi, Z., S.H. Mohammady, S. Hyshmand, and M. Rabiei. 2020. The study of different irrigation regimes influences on heritability and some physiological characteristics in wheat genotypes (Triticum aestivum L.). Journal of Crop Production. 13(4): 111-134. (In Persian).
• Kearsey, J.M., and S.H. Pooni. 1996. The genetic analysis of quantitative traits. 1st Edn.
• Khadka, K., H.J. Earl, M.N. Raizada, and A. Navabi. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science. 11(715): 1-26.
• Khaled, A.G.A., T.M. Elameen, and I.F.O. Elshazly. 2020. Heterosis and combining ability under favorable and salinity stress in Egyptian bread wheat. Asian Journal of Research and Review in Agriculture. 2(1): 35-51.
• Khalili, M., and M.R. Naghavi. 2018. Evaluation of genetic diversity of spring wheat cultivars for physiological and agronomic traits under drought stress. Journal of Crop Breeding. 10(25): 138- 151.
• Levene, H. 1960. Robust tests for equality of variances in contribution to probability and Statistics, (Ed) 1. Olkin: Stanford University Press, Palo Alto.
• Manette, A.S., C.J. Richard, B.F. Carver, and D.W. Mornhinweg. 1988. Water relations in winter wheat as drought reistance indicators. Crop Science. 28: 526-531.
• Mardani, Z. 2018. Genetic diversity and water deficit tolerance in bitter vetch. Master Thesis in Plant Breeding. Razi University Campus of Agriculture and Natural Resources. (In Persian).
• Miller, P.A., C. Willams, H.F. Robiwson, and R.E. Comstock. 1958. Estimates of genotypeic and environmental variance and covariance and their implication in section. Agronomy Journal. 50: 126-131.
• Mohammadi, S.A., and B.M. Prasanna. 2003. Analysis of genetic diversity in crop plants: Salient statistical tools and considerations. Crop Science. 43: 1235-1248.
• Mohammadkhani, N., and P. Sharifi. 2016. Anti-oxidative response of different wheat genotypes to drought during anthesis. Iranian Journal of Plant Physiology. 6(4): 1845- 1854.
• Morovati, Z., E. Farshadsfar, and M.H. Romena. 2019. Genetic evaluation of physiological traits related to drought tolerance in some bread wheat genotypes under rain fed conditions. Iranian Journal of Agriculture and Plant Breeding. 15(2): 35-50. (In Persian).
• Naghavi, M.R., M. Moghaddam, M. Toorchi, and M.R. Shakiba. 2016. Evaluation of spring wheat cultivars for physiological, morphological and agronomic traits under drought stress. Journal of Crop Breeding. 8(18): 64-77. (In Persian).
• Nahas, L.D., A.M. Alsamman, A. Hamwieh, N. Al-Husein, and G.H. Lababidi. 2020. Characterization of EST SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSR containing unigenes. Highlights in Bioscience. 3: 1-12.
• Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 22: 867-880.
• Pour Aboughadareh, A., A. Etminan, M. Abdelrahman, K.H.M. Siddique, and L.S. Phan Tran. 2020. Assessment of biochemical and physiological parameters of durum wheat genotypes at the seedling stage during polyethylene glycolinduced water stress. Plant Growth Regulation. 1-14.
• Pour-Aboughadareh, A., M. Omidi, M.R. Naghavi, A. Etminan, and A.A. Mehrabi. 2019. Estimation of genetic parameters and heritability of photosynthetic-related traits in Aegilops tauschii accessions under water deficit stress. Modern Genetics Journal. 14(3): 249- 260. (In Persian).
• Ramachandra-Reddy, A., K.V. Chaitanya, P.P. Jutur, and K. Sumithra. 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and Experimental Botany. 52(1): 33-42.
• Ranjbar, H. 2018. Study of genetic diversity of bread wheat under drought stress. Journal of New Ideas in Science, Engineering and Technology. 1(2): 1-7. (In Persian).
• Saed-Moucheshi, A., H. Razi, A. Dadkhodaie, M. Ghodsi, and M. Dastfal. 2019. Association of biochemical traits with grain yield in triticale genotypes under normal irrigation and drought stress conditions. Australian Journal of Crop Science. 13(02): 272-281.
• Sharma, S.N., R.S. Sain, and R.K. Sharma. 2003. The genetic control of flag leaf length in normal and late sown durum wheat. The Journal of Agricultural Science. 141(3-4): 323-331.
• Sinha,A.K. 1972. Colorimetric assay of catalase. Analytical biochemistry. 47: 389-394.
• Soleymani-Fard, A., and R. Naseri. 2020. Evaluation of relationships between grain yield and agro-physiological traits of bread wheat genotypes under rainfed conditions. Environmental Stresses in Crop Sciences. 13(3): 701-714. (In Persian).
• Staub, J.E., F.C. Serquen, and M. Gupta. 1996. Genetic markers, map construction, and their application in plant breeding. Horticulture Sciences. 31: 729–741.
• Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right scenario. Journal of Experimental Botany. 63: 25-31.
• Wright P.R., J. Morgan, R. Jessop, and A. Cass. 1995. Comparative adaptation of canola (Brassica napus) and Indian mustard (B. juncea) to soil water deficits: yield and yield components. Field Crops Research. 42: 1-13.
• Yaghotipoor, A., and E. Farshadfar. 2018. Evaluation of genetic diversity of durum wheat (Triticum Durum L.) genotypes based on physiological and biochemical traits in non-tension conditions. Journal of Crop Physiology. 10(37): 35-48. (In Persian).
• Yusuf, Z., W. Mohammed, H. Zeleke, S.H. Hussein, and H. Arno. 2021. Coheritability and genetic advances of agromorphological and oil quality traits in groundnut (Arachis hypogaea L.) genotypes from Ethiopia. International Journal of Agronomy. 5148772 (5).
