تحلیل اثر حکمرانی دیجیتال بر گرمایش جهانی در منتخبی از کشورهای عضو پروتکل کیوتو
محورهای موضوعی : انرژی و محیط زیستنگار تحریری 1 , سارا قبادی 2 , حسین شریفی رنانی 3
1 - دانشجوی دکتری، گروه علوم اقتصادی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
2 - دانشیار گروه اقتصاد، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 - دانشیار گروه اقتصاد، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
کلید واژه: حکمرانی دیجیتال, گرمایش جهانی, پروتکل کیوتو, رگرسیون انتقال ملایم تابلویی,
چکیده مقاله :
مقدمه: استفاده بیش از حد از سوختهای فسیلی بهعنوان منابع انرژی از طریق افزایش غلظت گازهای گلخانهای در جو، باعث افزایش میانگین دمای سطح زمین میشود. حکمرانی دیجیتال از موارد مطرح برای مقابله با روند رو به رشد گرمایش جهانی است که بر ضرورت دیجیتالی نمودن نهادها و خدمات عمومی در راستای کارآمدتر شدن دولتها در مسیر توسعه پایدار و بهبود شرایط زیستمحیطی تأکید میکند. از طرفی چنانچه گسترش دولت دیجیتال با تمرکز بر صرفهجویی در هزینهها و بدون توجه به توسعهسبز در بلندمدت باشد، کشور را به ایجاد ترمینالهای متعدد برای عرضه خدمات دیجیتال ملزم نموده و باعث افزایش انتشار کربن و گرمایش جهانی میشود. پژوهش حاضر اثرات آستانهای حکمرانیدیجیتال، توسعهمالی و اثربخشی دولت بر گرمایشجهانی در منتخبی از کشورهای عضو پروتکل کیوتو را در سالهای 2023-2003 بررسی میکند.
مواد و روشها: برای دستیابی به هدف پژوهش مدلی درنظر گرفته میشود که در آن متغیر وابسته تغییرات دمایی بهعنوان شاخص گرمایشجهانی و متغیر انتقال حکمرانیدیجیتال است. سایر متغیرهای مستقل شامل اثربخشی دولت، توسعه مالی، سرمایهگذاری مستقیم خارجی، تجارت و تولید ناخالص داخلی است. برای برآورد مدل از روش آستانهای PSTR استفاده میشود.
نتایج و بحث: نتایج داد که شاخص حکمرانی دیجیتال در رژیم اول و دوم به ترتیب اثر مثبت و منفی بر گرمایش جهانی داشته که بیانگر وجود رابطهای بهشکل U معکوس است. بهعبارتی استفاده از انرژیهای فسیلی برای توسعه، تولید و نصب دستگاهها و تجهیزات فناوری لازم در مراحل اولیه الکترونیک شدن دولت منجر به انتشار گازهای آلاینده و افزایش گرمایش جهانی شده، اما با رسیدن شاخص حکمرانی دیجیتال به حد آستانه اثرات غیرمستقیم ناشی از کاهش حملونقل برای انجام امور اداری دولتی وکاهش لزوم استفاده از انرژی برای ارائه خدمات بهصورت حضوری انتشار آلایندهها کاهش یافته است. اثربخشی دولت و توسعه مالی در هر دو رژیم اثر منفی بر گرمایش جهانی داشتند اما این اثر در رژیم دوم تقویت شده است.
نتیجهگیری: با توجه به اثر U معکوس حکمرانی دیجیتال بر گرمایش جهانی، در مراحل ابتدایی الکترونیکی شدن به واسطه استفاده از انرژیهای مختلف برای توسعه فناوری دیجیتال گرمایش جهانی تشدید و با رسیدن شاخص حکمرانی دیجیتال به حد آستانه و با کاهش نیاز به استفاده از حملونقل برای انجام امور اداری دولتی گرمایش جهانی کاهش مییابد. بنابراین توسعه حکمرانیدیجیتال بهعنوان هدف مطلوب ولی با حداقل نمودن آثار مخرب بر اقلیم باید دنبال شود. این امر از طریق تعامل با جامعه دانشگاهی بینالمللی، جذب سرمایهگذاران خارجی و استفاده از انرژیهای پاک در مراحل آغازین توسعه حکمرانیدیجیتال امکانپذیر است. مطابق با اثر منفی شاخص اثربخشی دولت در هر دو رژیم، توصیه میشود شهروندان در تصمیمگیریهای دولتی مشارکت داده شوند. همچنین بررسی منظم عملکرد دولت، بازنگری و اصلاح قوانین و مقررات ناکارآمد، میتواند با افزایش اثربخشی دولت به کاهش گرمایشجهانی کمک کند. با توجه به تاثیر توسعهمالی بر کاهش گرمایشجهانی، پیشنهاد میگردد دولتها از طریق توسعه همکاریهای بینالمللی در زمینه توسعهمالی، ارتقاء دانش مالی شهروندان، تسهیل ورود شرکتهای جدید به بازار و کاهش مقررات دست و پاگیر زمینه توسعهمالی و کاهش گرمایشجهانی را فراهم نمایند.
Introduction: Excessive use of fossil fuels as energy sources increases the concentration of greenhouse gases in the atmosphere, leading to a rise in the Earth’s average surface temperature. Digital governance has been proposed as one of the approaches to counter the growing trend of global warming, emphasizing the need to digitalize public institutions and services in order to enhance government efficiency in achieving sustainable development and improving environmental conditions. However, if the expansion of digital government focuses solely on cost reduction without considering long‑term green development, it may require the establishment of numerous terminals for delivering digital services, thereby increasing carbon emissions and intensifying global warming. This study examines the threshold effects of digital governance, financial development, and government effectiveness on global warming in a selected group of Kyoto Protocol countries during the period 2003–2023.
Materials and Methods: To achieve the research objective, a model is specified in which temperature change, as an indicator of global warming, is considered the dependent variable, and digital governance is used as the transition variable. Other independent variables include government effectiveness, financial development, foreign direct investment, trade, and gross domestic product. The Panel Smooth Transition Regression (PSTR) method is employed to estimate the model.
Results and Discussion: The results show that the digital governance index has a positive effect on global warming in the first regime and a negative effect in the second regime, indicating an inverted U‑shaped relationship. So in the early stages of government digitalization, the need for fossil energy in the development, production, and installation of information and communication technology equipment leads to increased pollutant emissions and global warming. However, once the digital governance index reaches its threshold, indirect effects—such as reduced transportation for administrative procedures and lower energy use for in‑person service delivery—contribute to a reduction in emissions. Government effectiveness and financial development had a negative effect on global warming in both regimes, with a stronger effect in the second regime.
Conclusion: The inverted U‑shaped effect of digital governance on global warming indicates that during the initial stages of digitalization, global warming intensifies due to the use of various energy sources for developing digital technologies, whereas after the digital governance index reaches a threshold, global warming declines as the need for transportation in government administrative processes decreases. Accordingly, the development of digital governance should be pursued as a desirable goal while minimizing its adverse climatic impacts. This can be achieved through collaboration with the international academic community, attracting foreign investors, and utilizing clean energy during the early stages of digital governance development. Given the negative effect of government effectiveness in both regimes, it is recommended that citizens be involved in governmental decision‑making processes. Moreover, regular performance evaluations of government, along with the review and reform of inefficient laws and regulations, can enhance government effectiveness and help reduce global warming. Considering the role of financial development in mitigating global warming, governments are advised to promote international cooperation in financial development, improve citizens’ financial literacy, facilitate market entry for new firms, reduce excessive regulations, provide financial facilities for startups and innovative companies, and expand banking services to remote areas in order to foster financial development and reduce global warming.
1. Adjei-Bamfo, P., Maloreh-Nyamekye, T., & Ahenkan, A. (2019). The role of e-government in sustainable public procurement in developing countries: A systematic literature review. Resources, Conservation and Recycling, 142, 189–203. DOI: 10.1016/j.resconrec.2018.12.005
2. Al‐Ghussain, L. (2019). Global warming: Review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21. DOI: 10.1002/ep.12971
3. Amanta, F., Kumar, P., Seger, M., & Vrain, E. (2024). The Impacts of Digitalised Daily Life on Climate Change. Environmental Change Institute, University of Oxford. Available from https://www.thebritishacademy.ac.uk/documents/5500/Digital-Society-Amanta-et-al.pdf. DOI: N/A
4. Aryafar, F., & Elmi, Z. (M.). (2024). The Impact of Information and Communication Technology on Ecological Footprint in Oil-Exporting Countries. Economic Research and Perspectives, 24(2), 27-58. DOI: 10.22034/24.2.27 [In Persian]
5. Bai, T., Qi, Y., Li, Z., & Xu, D. (2023). Digital economy, industrial transformation and upgrading, and spatial transfer of carbon emissions: The paths for low-carbon transformation of Chinese cities. Journal of Environmental Management, 344, 118528. DOI: 10.1016/j.jenvman.2023.118528
6. Bokhari, S. A. A., & Myeong, S. (2022). Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective. Sustainability, 14(2), 620. DOI: 10.3390/su14020620
7. Castro, C., & Lopes, I. C. (2022). Digital Government and Sustainable Development. Journal of the Knowledge Economy, 13(2), 880–903. DOI: 10.1007/s13132-021-00749-2
8. D'Amato, G., & Akdis, C. (2020). Global warming, climate change, air pollution and allergies. Authorea Preprints. DOI: N/A
9. Dalaee, H; Farajzadeh Asl, M.; Gandomkar, A., & Nami, M. H. (2016). Analysis of Extreme Precipitation Indices in the Period 1981-2010 with Military Approach. Defense Strategy, 14(2(54)), 155-177. DOI: N/A [In Persian]
10. Degang, Z., & Zhixiang, Z. (2025). The impact of digital governance on urban carbon emissions: Quasi-natural experimental evidence based on “National pilot policy of information benefiting the people”. Journal of Cleaner Production, 500, 145287. DOI: 10.1016/j.jclepro.2025.145287
11. Dimian, G. C., Maftei, M., Jablonský, J., Marin, E., & Olaru, S. M. (2025). The Influence of Digitalization on Greenhouse Gas Emissions in European Union. The Analysis of Mediating Effect of Renewable Energy Consumption. Journal of the Knowledge Economy. DOI: 10.1007/s13132-025-02657-1
12. Fathian, M., & Mahdavi Noor, H. (2019). Fundamentals and Management of Information Technology (20th ed.). Tehran: Iran University of Science and Technology Press. DOI: N/A [In Persian]
13. Fearnside, P. M., & Laurance, W. F. (2004). Tropical deforestation and greenhouse‐gas emissions. Ecological Applications, 14(4), 982–986. DOI: 10.1890/03-5220
14. Feng, Y., Liu, G., Meng, X., Jiang, K., Huang, R., Zhang, C., ... & Pan, Y. (2024). How does digital government affect carbon intensity at the global level? New perspective of resource allocation optimization. Resources Policy, 94, 105108. DOI: 10.1016/j.resourpol.2024.105108
15. Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, T. J., ... & Le Quéré, C. (2010). Update on CO2 emissions. Nature Geoscience, 3(12), 811–812. DOI: 10.1038/ngeo1022
16. Grigalashvili, V. (2023). Digital government and digital governance: grand concept. International Journal of Scientific and Management Research, 6(01), 01–25. DOI: N/A
17. Hao, X., Wang, X., Wu, H., & Hao, Y. (2023). Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity? Sustainable Development, 31(1), 360–378. DOI: 10.1002/sd.2390
18. Hassan, N. E. (2024). Global warming: Causes, impacts and urgent strategies for a sustainable future: A review. GSC Advanced Research and Reviews, 20(3), 73–87. DOI: 10.30574/gscarr.2024.20.3.0337
19. Hassana, N. E., & Umerb, M. I. (2022). Impacts of greenhouse gas emissions on ambient air quality in kwashe municipal solid waste landfill in Kurdistan region, Iraq. Eurasian Chemical Communications, 4(10), 1012–1021. DOI: N/A
20. Hilbert, M. (2020). Digital technology and social change: the digital transformation of society from a historical perspective. Dialogues in Clinical Neuroscience, 22(2), 189–194. DOI: 10.31887/DCNS.2020.22.2/mhilbert
21. Jafariparvizkhanlou, K., Paytkhati Oskoei, S. A., & Azali, R. (2021). Investigating the Impact of ICT and Economic Growth on Environmental Pollution: Case Study of Persian Gulf Countries. Scientific Quarterly Journal of Studies and Economic Policies, 8(1), 111-138. DOI: 10.22096/esp.2021.129466.1364 [In Persian]
22. Jahangard, E.; Mohammadi, T.; Ghasemi, A., & Iranshahi, Z. (2023). The Impact of ICT on Carbon Dioxide Emissions: A Panel Smooth Transition Regression Model (PSTR). Journal of New Economy and Trade, 18(4), 75-107. DOI: 10.30465/jnet.2024.45679.2047 [In Persian]
23. Jiao, S., & Sun, Q. (2021). Digital economic development and its impact on economic growth in China: Research based on the perspective of sustainability. Sustainability, 13(18), 10245. DOI: 10.3390/su131810245
24. Kuang, H., Akmal, Z., & Li, F. (2022). Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China. Renewable Energy, 197, 1–10. DOI: 10.1016/j.renene.2022.07.056
25. Li, C., Chen, X., & Yuan, C. (2025). Does digital government reduce carbon emissions? Empirical evidence from global sources. Journal of Environmental Management, 380, 125081. DOI: 10.1016/j.jenvman.2025.125081
26. Li, F., & Yan, J. (2024). How do e-government and green technology innovation affect carbon emissions: Evidence from resource-rich countries in the Shanghai Cooperation Organization. Energy Reports, 12, 4026–4033. DOI: 10.1016/j.egyr.2024.09.078
27. Li, J., Chen, L., Chen, Y., & He, J. (2022). Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China. Managerial and Decision Economics, 43(3), 616–629. DOI: 10.1002/mde.3403
28. Li, Z., & Wang, J. (2022). The dynamic impact of digital economy on carbon emission reduction: evidence city-level empirical data in China. Journal of Cleaner Production, 351, 131570. DOI: 10.1016/j.jclepro.2022.131570
29. Liu, Y., Zhang, X., & Shen, Y. (2024). Technology-driven carbon reduction: analyzing the impact of digital technology on China's carbon emission and its mechanism. Technological Forecasting and Social Change, 200, 123124. DOI: 10.1016/j.techfore.2023.123124
30. Luo, S., Yimamu, N., Li, Y., Wu, H., Irfan, M., & Hao, Y. (2023). Digitalization and sustainable development: How could digital economy development improve green innovation in China? Business Strategy and the Environment, 32(4), 1847–1871. DOI: 10.1002/bse.3215
31. Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive Technologies: Advances that will transform life, business, and the global economy. McKinsey Global Institute. DOI: N/A
32. Maslin, M. (2008). Global warming: A very short introduction. OUP Oxford. DOI: 10.1093/actrade/9780199557998.001.0001
33. Meng, C., Wang, L., & Lin, Y. (2024). Digital governance and carbon emission reduction: Evidence from “National Pilot Policy of Information Benefiting the People” in China. Journal of Environmental Management, 368, 122179. DOI: 10.1016/j.jenvman.2024.122179
34. Mirbagheri, A. (2025). Opportunities and Challenges of Expanding the Digital Economy for Sustainable Economic Growth in Iran by 1410. EAB Journal, 1(2), 94-120. DOI: N/A [In Persian]
35. NOAA National Centers for Environmental Information. (2024). Monthly Global Climate Report for Annual 2024, published online January 2025, retrieved on November 4, 2025 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202413. DOI: N/A
36. Nunes, L. J. (2025). Climate Change in the Porto Region (Northern Portugal): A 148 Years Study of Temperature and Precipitation Trends (1863–2010). Climate, 13(9), 175. DOI: 10.3390/cli13090175
37. Pande, S., Chandani, A., & Wagholikar, S. (2025). Digital governance across whole-of-the-government: Opportunities and challenges. Financial Internet Quarterly, 21(1), 67–75. DOI: N/A
38. Patnaik, P., & Bakkar, M. (2024). Exploring determinants influencing artificial intelligence adoption, reference to diffusion of innovation theory. Technology in Society, 79, 102750. DOI: 10.1016/j.techsoc.2024.102750
39. Rahmati, S. (2025). The Role of the Metaverse in Addressing the Consequences of Climate Change to Enhance Urban Resilience. Journal of Human Ecology, 4(11), 957-977. DOI: 10.22034/el.2025.511464.1070 [In Persian]
40. Salehnia, N.; Souri Naseri, N., & Rezaei, V. (2024). Analysis of the Role of Institutional Economics in Regulating Environmental Policies: The Impact of Internet, Democratic Trends, and Government Service Provision on CO2 Emissions Using Panel Quantile Model (Case Study: Global Sample). International Journal of Economic Research, 29(101), 237-280. DOI: 10.22054/ijer.2025.80119.1286 [In Persian]
41. Schuelke-Leech, B. A. (2018). A model for understanding the orders of magnitude of disruptive technologies. Technological Forecasting and Social Change, 129, 261–274. DOI: 10.1016/j.techfore.2017.09.013
42. Uddin, S. (2022). Causes, effects, and solutions to global warming. Academia Letters, 2. DOI: N/A
43. Ullah, F., Jiang, P., Elamer, A. A., & Owusu, A. (2022). Environmental performance and corporate innovation in China: The moderating impact of firm ownership. Technological Forecasting and Social Change, 184, 121990. DOI: 10.1016/j.techfore.2022.121990
44. United Nations Department of Economic and Social Affairs. (2024). E-Government Survey 2024: Accelerating digital transformation for sustainable development with the addendum on artificial intelligence. New York. DOI: 10.18356/9789211067286
45. Vafadar, P.; Mahmoudzadeh, M., & Ghavidel, S. (2025). The Role of Digital Transformation in Moderating Carbon Dioxide Emissions: Evidence from Upper-Middle-Income Countries. Journal of Economic Policy Research. DOI: 10.22034/jepr.2025.144229.1296 [In Persian]
46. Venkataramanan, M., & Smitha. (2011). Causes and effects of global warming. Indian Journal of Science and Technology, 4(3), 226–229. DOI: 10.17485/ijst/2011/v4i3.9
47. Vinod Kumar, T. M. (2014). E-governance for smart cities. In E-Governance for Smart Cities (pp. 1–43). Springer Singapore. DOI: 10.1007/978-981-10-3099-4_1
48. Wang, H., Li, Y., Lin, W., & Wei, W. (2023). How does digital technology promote carbon emission reduction? Empirical evidence based on e-commerce pilot city policy in China. Journal of Environmental Management, 325, 116524. DOI: 10.1016/j.jenvman.2022.116524
49. Xu, B., Sun, R., Xi, C., & Wang, Z. (2025). Digital governance and the low-carbon transition: evidence from double machine learning. Humanities and Social Sciences Communications, 12(1), 1–14. DOI: 10.1057/s41599-025-05144-9
50. Yang, F., Luo, C., & Pan, L. (2024). Do digitalization and intellectual capital drive sustainable open innovation of natural resources sector? Evidence from China. Resources Policy, 88, 104345. DOI: 10.1016/j.resourpol.2023.104345
51. Yi, J. (2025). Digital government and carbon emissions: evidence from China. Frontiers in Environmental Science, 13, 1470724. DOI: 10.3389/fenvs.2025.1470724
52. Zhang, M., Hou, J., & Liu, Y. (2025). Achieving development goals via digital government strategies for a sustainable digital economy that integrate natural resource governance and energy security. Resources Policy, 101, 105330. DOI: 10.1016/j.resourpol.2025.105330
53. ZHENG, J., WU, R., & QIN, W. (2023). Impact Mechanism and Conditions of the Public's Experience of Governmental Digital Governance on Their Perceived Better Life. Journal of Northeastern University (Social Science), 25(6), 57. DOI: N/A
54. Zhou, X., Zhou, D., Wang, Q., & Su, B. (2019). How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Economics, 81, 380–392. DOI: 10.1016/j.eneco.2019.04.014
