تأثیر مکمل روی–متیونین بر پاسخهای فیزیولوژیکی، استرس اکسیداتیو و بیان نسبی ژنهای IL-6،IL-10 و HSP70 در گوسفندان نژاد سنجابی تحت شرایط تنش گرمایی
تأثیر مکمل روی–متیونین در گوسفندان
محورهای موضوعی : ژنتیک
1 - گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تنش گرمایی, روی-متیونین, گوسفند سنجابی, بیان ژن, استرس اکسیداتیو, ظرفیت آنتی اکسیدانی,
چکیده مقاله :
مقدمه: تنش گرمایی یکی از مهمترین عوامل محدودکننده تولید در گوسفندان است که با ایجاد عدم تعادل در هموستازی فیزیولوژیکی، افزایش گونههای اکسیژن واکنشپذیر و اختلال در تنظیم ایمنی، سبب کاهش عملکرد و بروز التهاب سیستمیک میشود. در این مطالعه اثر مکمل روی–متیونین بر پاسخهای فیزیولوژیکی، شاخصهای استرس اکسیداتیو و بیان ژنهای IL-6، IL-10 و HSP70 در میشهای نژاد سنجابی غیرآبستن تحت تنش گرمایی شدید بررسی شد.
مواد و روش ها: این تحقیق بر روی ۲۵ رأس میش نژاد سنجابی در قالب طرح کاملاً تصادفی در گروههای مختلف تنش گرمایی و با تیمار مکمل روی-متیونین به مدت 40 روز انجام پذیرفت. سپس پارامترهای فیزیولوزیکی و بیان ژن در گروه ها مورد بررسی قرار گرفت.
یافته ها: تنش گرمایی باعث افزایش معنیدار ضربان قلب، نرخ تنفس و دمای مقعد و کاهش فعالیت GPX، SOD و TAC همراه با افزایش سطح MDA شد (05/0P<). همچنین، بیان ژن IL-6 و HSP70 به ترتیب 83/2 و 52/2 برابر افزایش و بیان ژن IL-10 به 63/0 برابر کاهش یافت (05/0P<). افزودن مکمل روی–متیونین بهویژه در سطوح ۳۰ و ۴۵ میلیگرم، به طور معنیداری شاخصهای فیزیولوژیکی و آنتیاکسیدانی را بهبود بخشید، سطح MDA را کاهش داد و بیان ژنهای IL-6 و HSP70 را تعدیل و بیان ژن IL-10 را افزایش داد (05/0P<).
نتیجه گیری: افزودن مکمل روی–متیونین به جیره میتواند راهکار تغذیهای مؤثری برای کاهش استرس فیزیولوژیک، بهبود وضعیت اکسیداتیو و تعدیل پاسخهای التهابی در گوسفندان سنجابی تحت تنش گرمایی باشد. استفاده از سطح ۳۰ میلیگرم بر کیلوگرم جیره به دلیل بیشترین اثربخشی توصیه میشود.
Introduction: Heat stress is one of the most significant limiting factors in sheep production. By disrupting physiological homeostasis, increasing reactive oxygen species (ROS), and impairing immune regulation, it leads to reduced performance and systemic inflammation. This study investigated the effect of zinc–methionine supplementation on physiological responses, oxidative stress indicators, and the expression of IL-6, IL-10, and HSP70 genes in non-pregnant Sangsari ewes under severe heat stress conditions.
Materials and Methods: This research was conducted on 25 Sangsari ewes in a completely randomized design, involving different heat stress groups and zinc-methionine treatment, over a period of 40 days. Subsequently, physiological parameters and gene expression were evaluated across the groups.
Results: Heat stress caused a significant increase in heart rate, respiratory rate, and rectal temperature, and decreased GPx, SOD, and TAC activity alongside elevated MDA levels (P<0.05). Furthermore, the expression of IL-6 and HSP70 genes increased by 2.83 and 2.52-fold, respectively, while IL-10 gene expression decreased to 0.63-fold (P<0.05). The addition of zinc–methionine supplement, particularly at levels of 30 and 45 mg, significantly improved physiological and antioxidant indices, reduced MDA levels, and modulated the expression of IL-6 and HSP70 genes while increasing IL-10 gene expression (P<0.05).
Conclusion: Adding zinc–methionine supplement to the diet can be an effective nutritional strategy to reduce physiological stress, improve oxidative status, and modulate inflammatory responses in Sangsari sheep under heat stress. The use of a 30 mg/kg of diet level is recommended due to its highest efficacy.
1. Habeeb AA, Osman SF, Teama FE, Gad AE. The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Trop Anim Health Prod. 2023;55(6):388. https://doi.org/10.1007/s11250-023-03805-y
2. Aryal B, Kwakye J, Ariyo OW, Ghareeb AF, Milfort MC, Fuller AL, et al. Major oxidative and antioxidant mechanisms during heat stress-induced oxidative stress in chickens. Antioxidants. 2025;14(4):471. https://doi.org/10.3390/antiox14040471
3. Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 2010;4(7):1167-83. https://doi.org/10.1017/S175173111000090X
4. Patiabadi Z, Razmkabir M, EsmailizadehKoshkoiyeh A, Moradi MH, Rashidi A, Mahmoudi P. Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS One. 2024;19(8):e0309023. https://doi.org/10.1371/journal.pone.0309023
5. Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6(5):707-28. https://doi.org/10.1017/S1751731111002448
6. Masters DG, Fels HE. Zinc supplements and reproduction in grazing ewes. Biol Trace Elem Res. 1985;7(2):89-93. https://doi.org/10.1007/BF02916567
7. Nagalakshmi D, Dhanalakshmi K, Himabindu D. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Vet Res Commun. 2009;33(7):631-44. https://doi.org/10.1007/s11259-009-9212-9
8. Oconitrillo M, Wickramasinghe J, Omale S, Beitz D, Appuhamy R. Effects of elevating zinc supplementation on the health and production parameters of high-producing dairy cows. Animals. 2024;14(3):395. https://doi.org/10.3390/ani14030395
9. Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 2003;133(5):1506S-9S. https://doi.org/10.1093/jn/133.5.1506S
10. Pang X, Miao Z, Dong Y, Cheng H, Xin X, Wu Y, et al. Dietary methionine restriction alleviates oxidative stress and inflammatory responses in lipopolysaccharide-challenged broilers at early age. Front Pharmacol. 2023;14:1120718. https://doi.org/10.3389/fphar.2023.1120718
11. Yang F, Smith MJ, Siow RC, Aarsland D, Maret W, Mann GE. Interactions between zinc and NRF2 in vascular redox signalling. Biochem Soc Trans. 2024;52(1):269-78. https://doi.org/10.1042/BST20230490
12. Peng-Winkler Y, Büttgenbach A, Rink L, Wessels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct. 2022;13(17):9143-52. https://doi.org/10.1039/d2fo01406h
13. Rabiee AR, Lean IJ, Stevenson MA, Socha MT. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: a meta-analysis. J Dairy Sci. 2010;93(9):4239-51. https://doi.org/10.3168/jds.2010-3058
14. Iranian Council of Animal Care. Guide to the care and use of experimental animals. Vol 1. Isfahan: Isfahan University of Technology; 1995.
15. National Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids, and New World camelids. Washington, DC: National Academies Press; 2007.
16. Mader TL, Davis MS, Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle. J Anim Sci. 2006;84(3):712-9. https://doi.org/10.2527/2006.843712x
17. Marai IF, El-Darawany AA, Fadiel A, Abdel-Hafez MA. Physiological traits as affected by heat stress in sheep—a review. Small Rumin Res. 2007;71(1-3):1-12. https://doi.org/10.1016/j.smallrumres.2006.10.003
18. Danesh Mesgaran M, Kargar H, Janssen R, Danesh Mesgaran S, Ghesmati A, Vatankhah A. Rumen-protected zinc–methionine dietary inclusion alters dairy cow performances, and oxidative and inflammatory status under long-term environmental heat stress. Front Vet Sci. 2022;9:935939. https://doi.org/10.3389/fvets.2022.935939
19. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-69.
20. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
21. Draper HH, Hadley M. [43] Malondialdehyde determination as index of lipid peroxidation. In: Packer L, editor. Methods in Enzymology. Vol 186. Academic Press; 1990. p. 421-31. https://doi.org/10.1016/0076-6879(90)86135-I
22. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292
23. Rawash RA, Sharaby MA, Hassan GE, Elkomy AE, Hafez EE, Hafsa SH, et al. Expression profiling of HSP 70 and interleukins 2, 6 and 12 genes of Barki sheep during summer and winter seasons in two different locations. Int J Biometeorol. 2022;66(10):2047-53. https://doi.org/10.1007/s00484-022-02339-6
24. Dangi SS, Gupta M, Maurya D, Yadav VP, Panda RP, Singh G, et al. Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop Anim Health Prod. 2012;44(8):1905-12. https://doi.org/10.1007/s11250-012-0155-8
25. Bharati J, Dangi SS, Chouhan VS, Mishra SR, Bharti MK, Verma V, et al. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle. Int J Biometeorol. 2017;61(6):1017-27. https://doi.org/10.1007/s00484-016-1281-1
26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262
27. Belhadj Slimen I, Najar T, Ghram A, Abdrrabba MJ. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr. 2016;100(3):401-12. https://doi.org/10.1111/jpn.12379
28. Jamei M, Sadeghi AA, Chamani M. Dose–responses of zinc as zinc–methionine supplements on antioxidant status, hematological parameters, immune response and the expression of IL-4 and IL-6 genes of ewes in the hot season. Anim Biotechnol. 2023;34(9):4860-8. https://doi.org/10.1080/10495398.2022.2151346
29. Tórtora-Pérez JL. The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res. 2010;89(2-3):185-92. https://doi.org/10.1016/j.smallrumres.2009.12.042
30. Sivakumar AV, Singh G, Varshney VP. Antioxidants supplementation on acid base balance during heat stress in goats. Asian-Australas J Anim Sci. 2010;23(11):1462-8. https://doi.org/10.5713/ajas.2010.90471
31. Sejian V, Maurya VP, Naqvi SM. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. Int J Biometeorol. 2010;54(6):653-61. https://doi.org/10.1007/s00484-010-0341-1
32. Ashrafi H, Sadeghi AA, Chamani M. Effect of selenium supplementation on antioxidant indices and metabolism-related hormones in rats exposed to heat stress. Iran J Biol Sci. 2023;17(4):35-47. https://doi.org/10.30495/zisti.2023.1974656.1147
33. Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N. Adaptation of animals to heat stress. Animal. 2018;12(s2):s431-44. https://doi.org/10.1017/S1751731118001945
34. Mahjoubi E, Amanlou H, Mirzaei-Alamouti HR, Aghaziarati N, Yazdi MH, Noori GR, et al. The effect of cyclical and mild heat stress on productivity and metabolism in Afshari lambs. J Anim Sci. 2014;92(3):1007-14. https://doi.org/10.2527/jas.2013-7153
35. Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci. 2014;92(8):3364-74. https://doi.org/10.2527/jas.2014-7714
36. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, De Oliveira AR. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017;6(2):24. https://doi.org/10.3390/antiox6020024
37. Jamei M, Sadeghi AA, Chamani M. The effect of zinc-methionine supplementation on antioxidant status and expression of interleukin-4 and interleukin-6 genes in female rats under heat stress. Iran J Biol Sci. 2022;17(3):29-39. https://doi.org/10.30495/zisti.2023.1973380.1144
38. Gaweł M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc: zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11-24. https://doi.org/10.1007/s10787-017-0309-4
39. Mandal GP, Dass RS, Isore DP, Garg AK, Ram GC. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus × Bos taurus) bulls. Anim Feed Sci Technol. 2007;138(1-2):1-12. https://doi.org/10.1016/j.anifeedsci.2006.09.014
40. Cope CM, Mackenzie AM, Wilde D, Sinclair LA. Effects of level and form of dietary zinc on dairy cow performance and health. J Dairy Sci. 2009;92(5):2128-35. https://doi.org/10.3168/jds.2008-1232
41. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749-84. https://doi.org/10.1152/physrev.00035.2014
42. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24(1):151-72. https://doi.org/10.1146/annurev.nutr.24.012003.132402
43. Fosmire GJ. Zinc toxicity. Am J Clin Nutr. 1990;51(2):225-7. https://doi.org/10.1093/ajcn/51.2.225
44. Pearce SC, Gabler NK, Ross JW, Escobar J, Patience JF, Rhoads RP, et al. The effects of heat stress and plane of nutrition on metabolism in growing pigs. J Anim Sci. 2013;91(5):2108-18. https://doi.org/10.2527/jas.2012-5738
45. Cao J, Henry PR, Guo R, Holwerda RA, Toth JP, Littell RC, et al. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci. 2000;78(8):2039-54. https://doi.org/10.2527/2000.7882039x
46. Spears JW. Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. J Anim Sci. 1989;67(3):835-43. https://doi.org/10.2527/jas1989.673835x
47. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals. 2020;10(8):1266. https://doi.org/10.3390/ani10081266
48. Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct. 2015;6(10):3195-204. https://doi.org/10.1039/c5fo00630a
49. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-85. https://doi.org/10.1016/j.autrev.2014.11.008
50. Ashrafi H. Effects of Dietary Organic Selenium Levels on Immunoglobulin G Concentration and Expression of INF-γ, IL-2, and IL-6 Genes in Female Wistar Rats. Iran J Biol Sci. 2023; [Volume/Issue]:71-84. https://doi.org/10.71631/zisti.2023.1123716
51. Prasad AS. Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol. 2014;28(4):364-71. https://doi.org/10.1016/j.jtemb.2014.07.019
52. Nayeri A, Upah NC, Sucu EK, Sanz-Fernandez MV, DeFrain JM, Gorden PJ, et al. Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. J Dairy Sci. 2014;97(7):4392-404. https://doi.org/10.3168/jds.2013-7541
53. Spears JW, Kegley EB. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J Anim Sci. 2002;80(10):2747-52. https://doi.org/10.2527/2002.80102747x
54. Collier RJ, Collier JL, Rhoads RP, Baumgard LH. Invited review: genes involved in the bovine heat stress response. J Dairy Sci. 2008;91(2):445-54. https://doi.org/10.3168/jds.2007-0540
55. Kapila N, Kishore A, Sodhi M, Sharma A, Mohanty AK, Kumar P, et al. Temporal changes in mRNA expression of heat shock protein genes in mammary epithelial cells of riverine buffalo in response to heat stress in vitro. Int J Anim Biotechnol. 2013;3(1):3-9.
56. Krężel A, Maret W. The biological inorganic chemistry of zinc ions. Arch Biochem Biophys. 2016;611:3-19. https://doi.org/10.1016/j.abb.2016.04.010
57. Al-Dawood A. Towards heat stress management in small ruminants-a review. Ann Anim Sci. 2017;17(1):59-88. https://doi.org/10.1515/aoas-2016-0068
58. Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci. 1994;77(7):2044-50. https://doi.org/10.3168/jds.S0022-0302(94)77149-6
59. Kumar BV, Singh G, Meur SK. Effects of addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian-Australas J Anim Sci. 2010;23(7):880-8. https://doi.org/10.5713/ajas.2010.90053
60. Ganaie AH, Ghasura RS, Mir NA, Bumla NA, Sankar G, Wani SA. Biochemical and physiological changes during thermal stress in bovines: A review. J Vet Sci Technol. 2013;4(1):1-6.
61. Sgorlon S, Stradaioli G, Zanin D, Stefanon B. Biochemical and molecular responses to antioxidant supplementation in sheep. Small Rumin Res. 2006;64(1-2):143-51. https://doi.org/10.1016/j.smallrumres.2005.04.009
62. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18(10):2222. https://doi.org/10.3390/ijms18102222
63. Sahin K, Orhan C, Tuzcu M, Sahin N, Hayirli A, Bilgili S, et al. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult Sci. 2016;95(5):1088-95. https://doi.org/10.3382/ps/pew012
64. Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 2010;4(7):1167-83. https://doi.org/10.1017/S175173111000090X
65. Celi P. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol. 2011;33(2):233-40. https://doi.org/10.3109/08923973.2010.514917
