بررسی فعالیتهای ضد میکروبی و ضد قارچی گیاهچههای باززایی شده گیاه دارویی پامچال (L. Primula veris)
فعالیت ضد میکربی پامچال
محورهای موضوعی : زیست شناسی گیاهی
فرح فراهانی
1
,
زهرا صبوري
2
,
محسن زرگر
3
1 - گروه میکروبیولوژی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران.
2 - گروه زيست شناسي، دانشگاه پيام نور (مرکز تهران شرق)، تهران، ايران
3 - گروه میکروبیولوژی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران.
کلید واژه: آنتی باکترال, ضدقارچ, عصاره متانولي, آلکالوييد, پامچال,
چکیده مقاله :
مقدمه : خانواده پامچال (Primulaceae) شامل گیاه گلدار Primula veris L. است که باوجود متابولیتهای ثانویه بعنوان گياه دارويي شناخته میشود. جوانهزنی بذرهای این گیاه در گلخانه یا مزرعه دشوار است. یکی از روشهای جایگزین برای بهدستآوردن مواد اولیه دارویی، کشت درونشیشهای و باززایی گیاه است.
مواد و روش ها: بذرهای P. veris از مناطق محلات و آمل ایران جمعآوری شدند و برروی محیط کشت (Murashige & Skoog) MS بدون هورمون قرار گرفتند. پودر خشک گياهچه های باززايي شده برای تهیه عصاره متانولي (برگ) و آلکالوئیدها (ریشه) استفاده گردید. برای سنجش فعالیت ضدمیکروبی، کشت ۲۴ ساعته سویههای باکتریایی و قارچی روی محیط مولر هینتون آگارانجام شد و چاهکهای حاوی عصاره با غلظت 100 ميکروليتر، جهت تعیین حداقل غلظت مهارکننده (MIC) مورد استفاده قرار گرفتند.
یافته ها: نتایج نشان دادند که ۳۰ تا ۳۵ درصد از بذرهای ژنوتیپ آمل پس از ۱۲ تا ۱۴ روز و ۲۰ تا ۲۵ درصد از بذرهای ژنوتیپ محلات پس از ۳ تا ۴ روز جوانه زدند. در تمام تیمارها، گياهچه ها از دانه رست ها باززايي شدند. عصاره متانولی برگ ژنوتیپ آمل توانست رشد کليه ميکرواورگانيسم ها را مهار کند و ژنوتيپ محلات بر ضد برخي ميکرواورگانيسم ها هاله عدم رشد ايجاد کند. آلکالوئید استخراجشده از ریشه ژنوتیپ آمل دارای اثرات ضدباکتری و ضدقارچ بود. در مقایسه با سایر عصارههای گیاهی، عصاره متانولی ریشه ژنوتیپ آمل کمترین MIC و بیشترین فعالیت ضدباکتری و ضدقارچی را نشان داد.
نتیجه گیری: با توجه به ترکیب شیمیایی غنی و فعالیتهای زیستی متنوع، گونه P. veris می تواند پتانسیل بالایی برای توسعه داروهای گیاهی و فرآوردههای دارویی نوین داشته باشد.
Introduction: The family Primulaceae includes the flowering plant Primula veris L., which is recognized as a medicinal plant due to its rich content of secondary metabolites. Seed germination of this species under greenhouse or field conditions is difficult. One alternative approach for obtaining medicinal raw materials is in vitro culture and plant regeneration.
Materials and Methods: Seeds of P. veris were collected from the Mahallat and Amol regions of Iran and cultured on hormone-free Murashige and Skoog (MS) medium. Dried powders of regenerated plantlets were used to prepare methanolic extracts from leaves and alkaloid extracts from roots. To evaluate antimicrobial activity, 24-hour cultures of bacterial and fungal strains were grown on Mueller–Hinton agar, and wells containing extracts at a concentration of 100 µL were used to determine the minimum inhibitory concentration (MIC).
Results: The results showed that 30–35% of seeds from the Amol genotype germinated after 12–14 days, whereas 20–25% of seeds from the Mahallat genotype germinated after 3–4 days. In all treatments, plantlets were regenerated from seedlings. The methanolic leaf extract of the Amol genotype inhibited the growth of all tested microorganisms, while the Mahallat genotype produced inhibition zones against some microorganisms. Alkaloids extracted from the roots of the Amol genotype exhibited both antibacterial and antifungal activities. Compared with other plant extracts, the methanolic root extract of the Amol genotype showed the lowest MIC values and the highest antibacterial and antifungal activities.
Conclusion: Given its rich chemical composition and diverse biological activities, P. veris has high potential for the development of herbal medicines and novel pharmaceutical products.
1. Alam F, Muhammad Din K, Sarfraz M, Qudoos A, Malik S. Genus Primula and its role in phytomedicine; a systematic review. Phytomedicine Plus. 2024;4:100510. doi: 10.1016/j.phyplu.2023.100510.
2. Richards AJ. Primula. Portland: Timber Press; 2003. ISBN 10: 0881922285 / ISBN 13: 9780881922288.
3. Jager AK, Guquin B, Adsersen A, Gudiksen L. Screening of plants used in Danish folk medicine to treat epilepsy and convulsions. J Ethnopharmacol. 2006;105:294-300. doi: 10.1016/j.jep.2005.10.015.
4. Majid A, Hassan S, Hussain W, Khan A, Hassan A, Khan A, et al. In vitro Approaches of Primula vulgaris Leaves and Roots Extraction against Human Pathogenic Bacterial Strains. World Appl Sci J. 2014;30(5):575-80.
5. Draxler L, Gohler I, Franz C. Cultivation and breeding of Cowslip (Primula veris) for producing medicinal drugs. Rev Fitoter. 2002;2(Suppl 1):327.
6. Budzyanowski J, Morozowska M, Wesolowska M. Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures. Phytochemistry. 2005;66:1033-9. doi: 10.1016/j.phytochem.2005.03.024.
7. Fyco G, Rodondy G, Flamyny G, Passarella D, Tome F. Comparative phytochemical and morphological analyses of three Italian Primula species. Phytochemistry. 2007;68:1683-91. doi: 10.1016/j.phytochem.2007.04.019.
8. Radulović NS, Stošić MZ. Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax. Phytochemistry. 2021;186:112732.
9. Winston D, Kuhn MA. Herbal Therapy & Supplements: A Scientific & Traditional Approach (rev. ed.). Philadelphia: Lippincott Williams & Wilkins; 2000.
10. Kemmerich B. Evaluation of efficacy and tolerability of a fixed combination of dry extracts of thyme herb and primrose root in adults suffering from acute bronchitis with productive cough. Arzneimittelforschung. 2007;57:607-15.
11. Glatthaar-Saalmüller B, Rauchhaus U, Rode S, Haunschild J, Saalmüller A. Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret® against viruses causing respiratory infections. Phytomedicine. 2011;19:1-7.
12. Luma M, Faslia N. Diversity of Cowslip (Primula Veris L.) natural populations in Kosovo assessed by morphological and chemical markers. Eur J Sci Res. 2018;149:15-23.
13. Huck CW, Huber CG, Onganya KH, Bonn GK. Isolation and characterization of methoxylated flavones in the flowers of Primula veris by liquid chromatography and mass spectrometry. J Chromatogr A. 2000;870:453-62.
14. Muller A, Ganzera M, Stuppner H. Analysis of phenolic glycosides and saponins in Primula elatior and Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass spectrometry. J Chromatogr A. 2006;1112:218-23. doi: 10.1016/j.chroma.2005.10.067.
15. Sufka KJ, Roach JT, Chamblyss JRWG, Brom SL, Feltensteyn MW, Wyandt CM, et al. Anxiolytic properties of botanical extracts in the chick social separation-stress procedure. Psychopharmacology (Berl). 2001;153:219-24. doi: 10.1007/s002130000571.
16. Bhatt H, Saklani S, Upadhayay K. Anti-oxidant and anti-diabetic activities of ethanolic extract of Primula Denticulata Flowers. Indones J Pharm. 2016;27:74.
17. Najmus-Saqib Q, Alam F, Ahmad M. Antimicrobial and cytotoxicity activities of the medicinal plant Primula macrophylla. J Enzyme Inhib Med Chem. 2009;24:697-701.
18. Ahmad VU, Shah MG. Macrophyllicinin, a saponin from Primula macrophylla. J Nat Prod. 1993;56:1580-5.
19. Brondani D, Nascimento C, Moreira DdM, Leite AL, De Souza I, Bieber L. Synthesis and antitumour activity of the primin (2-methoxy-6-n-pentyl-1,4-benzoquinone) and analogues. Med Chem. 2007;3:369-72.
20. Bas¸bülbül G, Özmen A, Halil Biyik H, Sen O. Antimitotic and antibacterial effects of the Primula veris L. flower extracts. CARYOLOGIA. 2008;61(1):88-91. doi: 10.1080/00087114.2008.10589614.
21. Deliorman Orhan D, Ozcelik B, Hosbasi S, Vural M. Assessment of antioxidant, antibacterial, antimycobacterial, and antifungal activities of some plants used as folk remedies in Turkey against dermatophytes and yeast-like fungi. Turk J Biol. 2012;36:672-86. doi: 10.3906/biy-1203-33.
22. Jaberian H, Piri K, Nazari J. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem. 2013;136:237-44.
23. Tokalov SV, Kynd B, Wollenweber E, Gutzeyt HE. Biological Effects of Epicuticular Flavonoids from Primula denticulata on Human Leukemia Cells. J Agric Food Chem. 2004;52:239-45.
24. Saharanavard S, Mojab F, Boluki Naseri P, Behzad S, Parsa Khankandi H. Chemical compounds isolated from aerial part of Primula auriculata L. Iran J Pharm Sci. 2018;14:63-70.
25. Lodhia MH, Bhatt KR, Thaker VS. Antibacterial Activity of Essential Oils from Palmarosa, Evening Primrose, Lavender and Tuberose. Indian J Pharm Sci. 2009;71(2):134-6. doi: 10.4103/0250-474X.54278.
26. Skopińska-Różewska E, Siwicki AK. Immunotropic and anti-tumor effects of plant adaptogens. II. Oenothera L. (Evening primrose). Cent Eur J Immunol. 2010;35(2):111-3.
27. Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Tsetegho Sokeng AJ, et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials (Basel). 2017;10(8):947. doi: 10.3390/ma10080947.
28. Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A Decade of Antifungal Leads from Natural Products: 2010–2019. Pharmaceuticals (Basel). 2019;12(4):182. doi: 10.3390/ph12040182.
29. Khodeer DM, Mehanna ET, Abushouk BI, Abdel-Daim MM. Protective Effects of Evening Primrose Oil against Cyclophosphamide-Induced Biochemical, Histopathological, and Genotoxic Alterations in Mice. Pathogens. 2020;9(2):98. doi: 10.3390/pathogens9020098.
30. Abd Rashed A, Gunasegavan Rathi D, Ahmad Nasir NAH, Abd Rahman AZ. Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. Molecules. 2021;26(4):1093. doi: 10.3390/molecules26041093.
31. Ahmadi S. Antibacterial and antifungal activities of medicinal plant species and endophyt. Cell Mol Biomed Rep. 2022;2(2):109-15. doi: 10.55705/cmbr.2022.340532.1042.
32. Sarropoulou V, Sarrou E, Angeli A, Martens S, Maloupa E, Grigoriadou K. Species-specific secondary metabolites from Primula veris subsp. veris obtained in vitro adventitious root cultures: an alternative for sustainable production. Sustainability. 2023;15(3):2452.
33. Mostafa FA, Gamal MA, Sabrin IR, Ehab ES. Antioxidant and anti-inflammatory activities of phenolic constituents from Primula elatior L. aerial part. IJPPR. 2014;6:74-8.
34. Noroozi Sharaf AR, Hamidoghli Y, Zakizadeh H. In vitro seed germination and micropropagation of primrose (Primula heterochroma Stapf.) an endemic endangered Iranian species via shoot tip explants. Res Rep. 2011;52:298-302.
35. Tütüncü M. In vitro culture of Primula: a review. Int J Agric Nat Sci. 2020;13:118-25.
36. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tissue culture. Physiol Plant. 1962;15:473-97. doi: 10.1111/j.1399-3054.1962.tb08052.x.
37. Azwanida NN. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4(3):196. doi: 10.4172/2167-0412.1000196.
38. Adebayo EA, Ishola OR. Phytochemical and antimicrobial screening of crude extracts of Terminalia gaucescens. Afr J Pharm Pharmacol. 2009;3:217-21.
39. Djilani A, Legseir B, Soulimani R, Dickob A, Younosb C. New Extraction Technique for Alkaloids. J Braz Chem Soc. 2006;17(3):518-20.
40. Ibraheem IBM, Abd-Elaziz BEE, Saad WF, Fathy WA. Green biosynthesis of silver nanoparticles using marine red algae Acanthophora specifera and its antimicrobial activity. J Nanomed Nanotechnol. 2016;7(409):1-4. doi: 10.4172/2157-7439.1000409.
41. Cheesbrough M. District laboratory practice in tropical countries. Part 2. Cambridge: Cambridge University Press; 2006. p. 137-50.
42. Razzouk S, Mazri MA, Jeldi L, Mnasri B, Ouahmane L, Alfeddy MN. Chemical Composition and Antimicrobial Activity of Essential Oils from Three Mediterranean Plants against Eighteen Pathogenic Bacteria and Fungi. Pharmaceutics. 2022;14:1608. doi: 10.3390/pharmaceutics14081608.
43. Mahady GB. Medicinal plants for the prevention and treatment of bacterial infections. Curr Pharm Des. 2005;11:2405-27. doi: 10.2174/1381612054367481.
44. Wendakoon A. Evaluation of Selected Medicinal Plants Extracted in Different Ethanol Concentrations for Antibacterial Activity against Human Pathogens. J Med Act Plants. 2012;1(2):6-5.
45. Buruk K, Sokmen A, Aydin F, Erturk M. Antimicrobial activity of some endemic plants growing in the Eastern Black Sea Region, Turkey. Fitoterapia. 2006;77:388-91. doi: 10.1016/j.fitote.2006.03.002.
46. Tosun F, Akyuz C, Sener B, Vural M. The evaluation of plants from Turkey for in vitro antimycobacterial activity. Pharm Biol. 2005;43:58-63. doi: 10.1080/13880200590903372.
47. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002;95(Suppl 41):22-6.
48. Trendafilova A, Raykova D, Ivanova V, Novakovic M, Nedialkov P, Paunova-Krasteva T, et al. Phytochemical Characterization and Anti-Biofilm Activity of Primula veris L. Roots. Molecules. 2025;30:1702. doi: 10.3390/molecules30081702.
49. Thuwaini MM. Antibacterial spectrum of medicinal plants: A review. GSC Biol Pharm Sci. 2023;24(02):239-84. doi: 10.30574/gscbps.2023.24.2.0338.
50. Höfling JF, Anibal PC, Obando-Pereda GA, Peixoto IAT, Furletti VF, Foglio MA, et al. Antimicrobial potential of some plant extracts against Candida species. Braz J Biol. 2010;70(4):1065-8. doi: 10.1590/S1519-69842010000500022.
51. Erzsébet V, Dorottya L, Anna M. Investigation of the phytochemical and antimicrobial activity of Primula veris L. extracts. Orvostudományi Értesítő. 2020;93(2):102-10. doi: 10.2478/orvtudert-2020-0013.
52. Alo MN, Anyim C, Igwe JC, Elom M, Uchenna DS. Antibacterial activity of water, ethanol and methanol extracts of Ocimum gratissimum, Vernonia amygdalina and Aframomum melegueta. Adv Appl Sci Res. 2012;3(2):844-8.
53. Oliver BG, Silver PM, Marie C, Hoot SJ, Leyde SE, White TC. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology (Reading). 2008;154(Pt 3):960-70. doi: 10.1099/mic.0.2007/013805-0.
54. Khan S, Shaheen H, Mehmood A, Nasar S, Khan T. Ethnobotanical and antibacterial study of Primula plants traditionally used in the indigenous communities of Western Himalaya, Pakistan. Saudi J Biol Sci. 2022;29:3244-54. doi: 10.1016/j.sjbs.2022.01.048.
