بررسي اثر فرآيند بازپخت بر خواص ساختاری، نوری و الکتریکی نانوساختارهاي آنتيموانات سديم (NaSbO3)
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینعلي بدري خضر 1 , حسین کفاشان 2
1 - دانشجوی کارشناسی ارشد رشته مهندسی مواد، 2. گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز. ایران
2 - 2. گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز. ایران
کلید واژه: نانوساختارهای NaSbO3, عملیات بازپخت, نورتابناکی, طیف¬نگاری رامان و خواص الکتریکی,
چکیده مقاله :
این پژوهش تأثیر دمای بازپخت بر خواص ساختاری، مورفولوژیکی، نوری و الکتریکی نانوذرات NaSbO3 حاصل از هم-رسوبي NaSb(OH)6 را بررسی میکند. تحلیل پراش پرتو ایکس (XRD) نشاندهنده تبدیل فازی از NaSb(OH)6 به NaSbO3 در دماهای 400 تا 500 درجه سانتیگراد است. بلورینگی بهینه در دماي 500 درجه سانتيگراد رخ داده و فازهاي ثانويه Sb2O3 و Na3SbO4 در دماهاي 1000-600 درجه تشكيل ميشوند. کرنش شبکه با افزایش دما به دلیل حذف نقصها و رشد دانه کاهش مییابد، البته در 800 درجه، بهدليل تشکیل ناقص فازها کرنش را افزایش میيابد. میکروسکوپ الکترونی عبوری و روبشی، تکامل مورفولوژیکی از ذرات نامنظم و تجمعیافته به ساختارهای صفحهمانند یکنواخت در 500 درجه، میلهمانند در 800 درجه و تکهتکهشده در 1000 درجه را تأیید میکنند. طیفسنجی نورتابناکی و UV-Vis بلورینگی بهبودیافته در 500 درجه را تأييد ميكند. در اين دما عبوردهي افزايش يافته، در حالی که دماهای بالاتر حالات مرتبط با نقص را ایجاد میکنند. مطالعات الکتریکی هدایت بهینه با رفتار اهمی در 500 درجه را تأیید میکنند، درحالیکه در 800 درجه هدایت تحت تأثیر تلهها به دلیل ناپایداری فازی کاهش مییابد. طیفسنجی رامان بهبود بلورینگی در 500 درجه و تبدیلات فازی در دماهای بالاتر را تأیید میکند. این یافتهها دمای 500 درجه سانتیگراد را بهعنوان دمای بهینه بازپخت برای نانوذرات NaSbO3 برجسته میکنند که تعادل خواص ساختاری، نوری و الکتریکی را برای کاربردهای اپتوالکترونیک فراهم میکند.
This study investigates the impact of annealing temperature on the structural, morphological, optical, and electrical properties of NaSbO3 nanoparticles (NPs) derived from co-precipitated NaSb(OH)6. X-ray diffraction (XRD) analysis reveals a phase transformation from NaSb(OH)6 to NaSbO3 at 400–500°C, achieving optimal crystallinity at 500°C, followed by the emergence of secondary Sb2O3 and Na3SbO4 phases at 600–1000°C. Lattice strain decreases with increasing temperature due to defect annihilation and grain growth, except at 800°C, where incomplete phase formation elevates strain (ε=2.42×10-3). Transmission electron microscopy and field-emission scanning electron microscopy confirm morphological evolution from irregular, agglomerated particles to uniform, plate-like structures at 500°C, transitioning to rod-like forms at 800°C and fragmented particles at 1000°C. Photoluminescence and UV-Vis spectroscopy indicate enhanced crystallinity at 500°C, with a reduced band gap (3.46 eV) and increased transmittance, while higher temperatures introduce defect-related states. Electrical studies show optimal conductivity at 500°C, with ohmic behavior, whereas 800°C exhibits trap-dominated conduction due to phase instability. Raman spectroscopy corroborates improved crystallinity at 500°C and phase transitions at higher temperatures. These findings highlight 500°C as the optimal annealing temperature for NaSbO3 NPs, balancing structural, optical, and electrical performance for potential optoelectronic applications.
1. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian J Chem. 2019;12(7):908-31.
2. Katiyar NK, Goel G, Hawi S, Goel S. Nature-inspired materials: Emerging trends and prospects. NPG Asia Materials. 2021;13(1):56.
3. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances. 2021;2(6):1821-71.
4. Patel KD, Singh RK, Kim H-W. Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons. 2019;6(3):434-69.
5. Yi S, Dai F, Zhao C, Si Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Scientific Reports. 2017;7(1):9806.
6. Quiroz A, Chavira E, Palomino-Merino R, Guzmán J, Flores C. Polymorphic synthesis and structural characterization of NaSbO3 prepared by sol–gel acrylamide polymerization. Journal of Solid State Chemistry. 2022;315:123478.
7. Mizoguchi H, Woodward PM, Byeon S-H, Parise JB. Polymorphism in NaSbO3: Structure and Bonding in Metal Oxides. J Am Chem Soc. 2004;126(10):3175-84.
8. Kim M, Klenner S, McNally GM, Nuss J, Yaresko A, Wedig U, et al. Mixed Valence and Superconductivity in Perovskite Antimonates. Chem Mater. 2021;33(17):6787-93.
9. Allan PK, Griffin JM, Darwiche A, Borkiewicz OJ, Wiaderek KM, Chapman KW, et al. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy. J Am Chem Soc. 2016;138(7):2352-65.
10. Wang B, Chen SC, Greenblatt M. The Crystal Structure and Ionic Conductivity of the Ilmenite Polymorph of NaSbO3. Journal of Solid State Chemistry. 1994;108(1):184-8.
11. Chen DP, Bowers W, Skrabalak SE. Aerosol-Assisted Combustion Synthesis of Single-Crystalline NaSbO3 Nanoplates: A Topotactic Template for Ilmenite AgSbO3. Chem Mater. 2015;27(1):174-80.
12. Chakraborty AR, Zohora Toma FT, Alam K, Yousuf SB, Hossain KS. Influence of annealing temperature on Fe₂O₃ nanoparticles: Synthesis optimization and structural, optical, morphological, and magnetic properties characterization for advanced technological applications. Heliyon. 2024;10(21):e40000.
13. Ansari MR, Khaladkar S, Kalekar A, Pathi P, Peta KR. Effect of annealing temperature on structural and optical properties of BaFe2O4 nanocrystals: Energy storage applications. Journal of Energy Storage. 2025;113:115650.
14. Shyam R, Negi D, Shekhawat K, Kumar M, Gupta M, Vashishtha P, et al. Investigation of annealing effects on structural, morphological, optical, chemical, and luminescent properties of (K,Na)NbO3 thin films. Phys B. 2023;660:414908.
15. Fakhri MA, Salim ET, Hashim U, Abdulwahhab AW, Salim ZT. Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J Mater Sci: Mater Electron. 2017;28(22):16728-35.
16. Pikula T, Szumiata T, Siedliska K, Mitsiuk VI, Panek R, Kowalczyk M, et al. The Influence of Annealing Temperature on the Structure and Magnetic Properties of Nanocrystalline BiFeO3 Prepared by Sol–Gel Method. Metallurgical and Materials Transactions A. 2022;53(2):470-83.
17. Yu G, Wang W, Jiang C. Synthesis and the characterization for transition metal-ion based photonics: Broadband near-IR emission properties of nickel ion doped NaSbO3 ceramics. Ceram Int. 2021;47(1):776-81.
18. Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media. Chin Phys Lett. 2013;30(11):118103.
19. Alizadeh A, Kafashan H. The effect of Cu-dopant on the structural, optical, and electrical properties of NiSe2 nanostructures. Ceram Int. 2025;51(21, Part B):34555-70.
20. Alizadeh A, Kafashan H. Physical properties of Co-doped NiSe2 nanostructures. Ceram Int. 2025;51(22, Part B):37931-44.
21. Akl AA, Hassanien AS. Microstructure and crystal imperfections of nanosized CdSxSe1−x thermally evaporated thin films. Superlattices Microstruct. 2015;85:67-81.
22. Mote VD, Lokhande SD, Kathwate LH, Awale MB, Sudake Y. Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method. Mater Sci Eng, B. 2023;289:116254.
23. Ayon SA, Billah MM, Hossain MN. Effect of annealing temperature on structural, optical, and photocatalytic properties of modified sol–gel-driven ZnO nanoparticles. Surface and Interface Analysis. 2023;55(6-7):443-9.
24. Alwany AB, Youssef GM, Samir OM, Algradee MA, NA AY, Swillam MA, et al. Annealing temperature effects on the size and band gap of ZnS quantum dots fabricated by co-precipitation technique without capping agent. Sci Rep. 2023;13(1):10314.
25. Yimamu AU, Adoons VN, Phokojoe RA. Effect of annealing temperatures on the properties of CdZrS nanoparticles prepared by sol-gel synthesis method. Heliyon. 2024;10(23):e40514.
26. Shou C, Yang T, Ren K, Almujtabi A, Zhu E, Mahmud QS, et al. Photoluminescence study of optical transitions in spinel zinc gallium oxide thin films. Scientific Reports. 2025;15(1):16667.
27. Sousa FB, Fujisawa K, Menescal F, Matos MJS, Pimenta MA, Chacham H, et al. Optical spectroscopy of defects in atomically thin transition metal dichalcogenides. Applied Physics Reviews. 2025;12(2).
28. Noculak A, Morad V, McCall KM, Yakunin S, Shynkarenko Y, Wörle M, et al. Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs2MInCl6 (M = Na, K) Matrices. Chem Mater. 2020;32(12):5118-24.
29. Boutinaud P. Luminescence of Sb3+ in closed shell transition metal oxides. J Lumin. 2019;208:394-401.
30. Yasukawa M, Hosono H, Ueda N, Kawazoe H. Photoemission studies on valence band structure of AgSbO3. Solid State Commun. 1995;95(6):399-403.
31. Teixeira GF, Wright TR, Manfroi DC, Longo E, Varela JA, Zaghete MA. Photoluminescence in NaNbO3 particles and films. Mater Lett. 2015;139:443-6.
32. Naidu BS, Pandey M, Sudarsan V, Vatsa RK, Tewari R. Photoluminescence and Raman spectroscopic investigations of morphology assisted effects in Sb2O3. Chem Phys Lett. 2009;474(1):180-4.
33. Deng Z, Chen D, Tang F, Ren J, Muscat AJ. Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. Nano Research. 2009;2(2):151-60.
34. Kim HW, Kim HS, Na HG, Yang JC, Kebede MA, Lee C. Growth of Sb2O3 submicron rods by the thermal evaporation of a mixture of Zn and Sb powders. Ceram Int. 2011;37(2):593-8.
35. Mizoguchi H, Woodward PM, Park C-H, Keszler DA. Strong Near-Infrared Luminescence in BaSnO3. J Am Chem Soc. 2004;126(31):9796-800.
36. Chen H, Zhao J, Shimai S, Mao X, Zhang J, Zhou G, et al. High transmittance and grain-orientated alumina ceramics fabricated by adding fine template particles. Journal of Advanced Ceramics. 2022;11(4):582-8.
37. Homcheunjit R, Pluengphon P, Tubtimtae A, Teesetsopon P. Structural, optical, and electrical properties via two simple routes for the synthesis of multi-phase potassium antimony oxide thin films. Phys B. 2022;637:413885.
38. Güneri E, Kariper A. Optical properties of amorphous CuS thin films deposited chemically at different pH values. J Alloys Compd. 2012;516:20-6.
39. Gunes I, Sarica E, Bilgin V, Kucukarslan A. Tailoring the physical properties of ultrasonically spray pyrolyzed SnS thin films with silver doping. J Sol-Gel Sci Technol. 2025.
40. Makhlouf O, Khadraoui M, Aissat A, Sahraoui K, Miloua R. Structural, optical and electrical properties of mixed PbS – SnS thin films deposited by spray pyrolysis. Materials Today Communications. 2025;46:112923.
41. Pereira ALJ, Gracia L, Santamaría-Pérez D, Vilaplana R, Manjón FJ, Errandonea D, et al. Structural and vibrational study of cubic Sb${}_{2}$O${}_{3}$ under high pressure. Phys Rev B. 2012;85(17):174108.
42. Bahfenne S, Frost RL. Raman spectroscopic study of the antimonate mineral roméite. Spectrochim Acta, Part A. 2010;75(2):637-9.
43. Frost RL, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3. Radiation Effects and Defects in Solids. 2010;165(3):206-10.
44. Kafashan H, Rabiei Baboukani A. Electrochemically deposited nanostructured Cd-doped SnS thin films: Structural and optical characterizations. Ceram Int. 2024;50(3, Part B):5717-27.
