Internal quantum efficiency in InGaN/GaN multiple-quantum-well light-emitting diodes under temperature and hydrostatic pressure
محورهای موضوعی : فصلنامه نانوساختارهای اپتوالکترونیکی
Rajab Yahyazadeh Sadagiyani
1
,
zahra hashempour
2
1 - physics Department, Khoy Branch, Islamic Azad University, Khoy, Iran
2 - physics Department, Khoy Branch, Islamic Azad University, Khoy, Iran
کلید واژه: internal efficiency, Huang-Rhys factor, capture coefficient, multi-quantum well.,
چکیده مقاله :
This study used a numerical model to investigate the internal quantum efficiency in InGaN/GaN multiple-quantum-well light-emitting diodes (MQWLEDs) under varying temperatures and hydrostatic pressures. Finite difference techniques were employed to acquire energy eigenvalues and their corresponding eigenfunctions of MQWLED, and the hole eigenstates were calculated via a k.p method. Our calculations demonstrated that a temperature change could increase the electron and hole capture coefficients, while a change in pressure could decrease them in the quantum well. It was further found that the Huang-Rhys factor of light holes and the splitting of band holes made the highest contributions to hole capture coefficients. Based on these results, radiative and non-radiative recombination (i.e., Auger and Shockley-Read-Hall) and carrier leakage current decrease with increasing pressure and increase with increasing temperature. Increasing pressure by 10 GPa increases the quantum efficiency, while increasing temperature in the range of 300-600℃ has the opposite effect, decreasing it. Comparing this model with other models and experimental data demonstrates the good validity of this model, particularly in light of the multiphonon model. Generally, increasing temperature has a negative effect and increasing pressure has a positive effect on the internal quantum efficiency of these light-emitting diodes.
This study used a numerical model to investigate the internal quantum efficiency in InGaN/GaN multiple-quantum-well light-emitting diodes (MQWLEDs) under varying temperatures and hydrostatic pressures. Finite difference techniques were employed to acquire energy eigenvalues and their corresponding eigenfunctions of MQWLED, and the hole eigenstates were calculated via a k.p method. Our calculations demonstrated that a temperature change could increase the electron and hole capture coefficients, while a change in pressure could decrease them in the quantum well. It was further found that the Huang-Rhys factor of light holes and the splitting of band holes made the highest contributions to hole capture coefficients. Based on these results, radiative and non-radiative recombination (i.e., Auger and Shockley-Read-Hall) and carrier leakage current decrease with increasing pressure and increase with increasing temperature. Increasing pressure by 10 GPa increases the quantum efficiency, while increasing temperature in the range of 300-600℃ has the opposite effect, decreasing it. Comparing this model with other models and experimental data demonstrates the good validity of this model, particularly in light of the multiphonon model. Generally, increasing temperature has a negative effect and increasing pressure has a positive effect on the internal quantum efficiency of these light-emitting diodes.
[1] Y. Zhao et al. Toward High Efficiency at High Temperatures: Recent Progress and Prospects on InGaNBased Solar Cells. Mater. Today Energy. 31 (2023) 101229.
[2] S. Nakamura, T. Mukai, M. Senoh. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64 (1994) 1687–1689.
[3] K. Fu, H. Fu, X. Huang, H. Chen, T.-H. Yang, J. Montes, C. Yang, J. Zhou, Y. Zhao. Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics. IEEE Electron Device Lett. 40(11) (2019) 1728.
[4] Y. Zhao, H. Fu, G. T. Wang, S. Nakamura.Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv Opt Photonics. 10(1) (2018) 246.
[5] Z. Chen et al. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs. Appl. Phys. Lett. 109 (2016) 062104.
[6] L. Zhao, T. Detchprohm, C. Wetzel. High 400°C operation temperature blue spectrum concentration solar junction in GaInN/GaN. Appl. Phys. Lett. 105(24) (2014) 243903.
[7] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager. III Superior radiation resistance of In 1-XGa XN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94(10) (2003) 6477.
[8] C. J. Neufeld et al. Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells. Appl. Phys. Lett. 99 (2011) 071104.
[9] J. J. Williams et al. Refractory InxGa 1-xN Solar Cells for High-Temperature Applications. IEEE J. Photovolt. 7(6) (2017) 1646.
[10] X. Huang, et al. Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress. Appl. Phys. Lett. 111(23) (2017) 233511.
[11] A. Hangleiter. Recombination dynamics in GaInN/GaN quantum wells. Semicond. Sci. Technol. 34(7) (2019) 073002.
[12] J. Piprek. Effciency Models for GaN-Based Light-Emitting Diodes: Status and Challenges. Mater. 13 (2020)5174.
[13] Q.H Pham, J. C Chen, H. B Nguyen. Three-Dimensional Numerical Study on the Efficiency Droop in InGaN/GaN Light-Emitting Diodes. IEEE Photonics J. 11(1) (2019) 8200417.
[14] H.-Y Ryu, G.-H Ryu., Y.-H. Choi., B. Ma. Modeling and simulation of efficiency droop in GaN-based blue lightemitting diodes incorporating the effect of reduced active volume of InGaN quantum wells. Curr. Appl. Phys. 17 (2017) 1298-1302.
[15] A. Herzog, M. Wagner, T. Q. Khanh. Efficiency droop in green InGaN/GaN light emitting diodes: Degradation mechanisms and initial characteristics. Microelectron. Reliab. 112 (2020) 113792.
[16] T. Jeong, Hyung-Jo Park, Ju. Jin-Woo, H. Oh, J. Baek, J. Ha, G. Ryu, H. Ryu. High efficiency InGaN blue light-emitting diode with >4-W output power at 3 A. IEEE Photonics Technol. Lett. 26(7) (2014) 649.
[17] G. Verzellesi, D. Saguatti, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J. Appl. Phys. 114(7) (2013) 071101.
[18] Q. Dai et.al. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 97 (2010) 133507.
[19] H.-Y. Ryu, H.-S. Kim, J.-In Shim. Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett. 95 (2009) 081114.
[20] C. Onwukaeme , B. Lee, H.-Y. Ryu. Temperature Dependence of Electron Leakage Current in InGaN Blue Light-Emitting Diode Structures. Nanomater. 12 (2022) 2405.
[21] J. Piprek, F. Römer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett., 106 (2015) 101101.
[22] R. Yahyazadeh. Effect of hydrostatic pressure on the radiative current density of InGaN/GaN multiple quantum well light emitting diodes. Opt. Quantum Electron. 53 (2021) 571.
[23] R. Yahyazadeh, Z. Hashempour. Numerical investigation of Auger current density in a InGaN/GaN multiple quantum well solar cell under hydrostatic pressure. Indian J. Phys. 98 (2024) 1217.
[24] J. Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi (A) Appl. Mater. Sci. 207(10) (2010) 2217.
[25] W. Liu. Shockley–Read–Hall recombination and efficiency droop in InGaN/GaN
multiple-quantum-well green light-emitting diodes. J. Phys. D Appl. Phys. 49 (2016) 145104.
[26] A. David, N. G. Young, C. A. Hurni, M. D. Craven. Quantum Efficiency of III-Nitride Emitters: Evidence for Defect-Assisted Nonradiative Recombination and its Effect on the Green Gap. Phys. Rev. Appl. 11 (2019) 031001.
[27] A. David, C. A. Hurni, N. G. Young, M. D. Craven. Field-assisted Shockley-Read-Hall recombinations in III-nitride quantum wells. Appl. Phys. Lett. 111 (2017) 233501.
[28] M. Pristovsek, A. Bao, R. A. Oliver. Effects of Wavelength and Defect Density on the Efficiency of (In,Ga)N-Based Light-Emitting Diodes. Phys. Rev. Appl. 7 (2017) 064007.
[29] S. Shishehchi, A. Asgari, R. Kheradmand. The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes. Opt. Quantum Electron. 41 (2009) 525.
[30] K.A. Bulashevich, V.F. Mymrin, S. Y. Karpov, I.A. Zhmakin, A. I. Zhmakin. Simulation of visible and ultra-violet group-III nitride light emitting diodes. J. Comput. Phys. 213(1) (2006) 214.
[31] T. Suski et al. A pressure-tuned blue-violet InGaN/GaN laser diode grown on bulk GaN crystal. Appl. Phys. Lett. 84(8) (2004) 1236.
[32] A. Palma, A. Godoy, J. Jiménez-Tejada, J. Carceller, J. López-Villanueva. Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide–semiconductor structures. Phys. Rev. B Condens. 56(15) (1997) 9565.
[33] R. Yahyazadeh, Z. Hashempour. Effect of hydrostatic pressure on the Auger coefficient of InGaN/GaN multiple-quantum-well laser diode. J. Nanophotonics. 17(2) (2023) 026011.
[34] X. Huang et al. Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano. 10(5) (2016) 5145.
[35] B. Jogai. Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 93 (2003) 1631.
[36] R. Yahyazadeh. Effect of hydrostatic pressure on the photocurrent density of InGaN/GaN multiple quantum well solar cells. Indian J. Phys. 96 (2022) 2815.
[37] C. Xia, Z. Zeng, Q. Chang, S. Wei. Donor impurity states in zinc-blende InGaN/GaN asymmetric coupled quantum dots: Hydrostatic pressure effect. Phys. E: Low-Dimens. Syst. Nanostructures. 42(8) (2010) 2041.
[38] M. Usman. Enhanced Internal Quantum Efficiency of Bandgap-Engineered GreenW-Shaped Quantum Well Light-Emitting Diode. Appl. Sci. 9 (2019) 77.
[39] J.Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Elsevier Science., San Diego, 2013, pp. 121–129.
[40] J. Nelson, The Physics of Solar Cells, Imperial College Press., London, 2003, pp.106-109.
[41] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89 (2001) 5815.
[42] B. Chouchen et al. Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects. AIP Adv. 9 (2019) 045313.
[43] A. Asgari, M. Kalafi, L. Faraone. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys. E: Low-Dimens. Syst. Nanostructures. 28(4) (2005) 491.
[44] B. Jogai. Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures. Phys. Status Solidi B Basic Res. 233(3) (2002) 506.
[45] S. L. Chuang, C. S. Chang. k.p method for strained wurtzite semiconductor. Phys. Rev. B. 54 (1996) 2502.
[46] S. Adachi, Physical Properties of III-V compounds, John Wiley & Sons., New York, 1992, pp.290.
[47] J. H. Zheng, H. S. Tan, S. C. Ng. Theory of non-radiative capture of carriers by multiphonon processes for deep centres in semiconductors. J. Phys.: Condens. Matter. 6(9) (1994) 1695.
[48] W. Wei-Ying et al. Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells. Chin. Phys. B. 23(11) (2014) 117803.
[49] J.G. Rojas-Briseño, I. Rodríguez-Vargas, M.E. Mora-Ramos, J.C. Martínez-Orozco. Heavy and light exciton states in c-AlGaN/GaN asymm etric double quantum wells. Phys. E: Low-Dimens. Syst. Nanostructures. 124 (2020) 114248.
[50] B. K. Ridley, W. J. Schaff, and L. F. Eastman. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. J. Appl. Phys. 94 (2003)3972.
[51] Mi. Lozac'h, Y. Nakano, L. Sang, K. Sakoda, M. Sumiya. Study of Defect Levels in the Band Gap for a Thick InGaN Film. Jpn. J. Appl. Phys. 51(12) (2012) 121001.
[52] C.D. Vedel, T. Gunst, S. Smidstrup, V. P. Georgiev. Shockley-Read-Hall recombination and trap levels in In0.53 Ga 0.47 As point defects from first principles. Phys. Rev. B. 108 (2023) 094113.
[53] J. F. Kong, W. Z. Shen, Q. X. Guo. Raman-scattering probe of anharmonic effects due to temperature and composition in InGaN. Phys. Status Solidi B Basic Res, 250(2) (2013) 329.
[54] X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, Q. X. Guo. Temperature dependence of Raman scattering in hexagonal indium nitride films. J. Appl. Phys. 98 (2005) 033527.
[55] S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials, Springer., Cham, 2017, pp.725-727
[56] Xia, C., Zeng, Z., Chang, Q., Wei, S. Donor impurity states in zinc-blende InGaN/GaN asymmetric coupled quantum dots: Hydrostatic pressure effect. Phys. E: Low-Dimens. Syst. Nanostructures. 42, (2010). 2041
[57] S.P. Zory, Quantum Well Lasers, Academic Press., San Diego, California, 1993, pp. 58–150.
[58] B.K. Ridley. A note on the origin of the yellow luminescence in GaN.” J. Phys.: Condens. Matter. 10(28) (1998) 461.
[59] J. Wang, P. von Allmen, J.P. Leburton, K.J. Linden. Auger recombination in long-wavelength strained-layer quantum-well structures. IEEE J. Quantum Electron. 31(5) (1995) 864.
[60] E. Kioupakis, D. Steiauf, P. Rinke, K. T. Delaney, C. G. Van de Walle1. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B. 92 (2015) 035207.
[61] Y. Q. Kang, J. H. Zheng, H. S. Tan, S. C. Ng. Charge-state effects of deep canters semiconductors on non-radiative capture of carriers by multiphonon processes. Appl. Phys. A. 63 (1996) 37.
[62] J. W. Pan, J.I. Chyi. Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers. IEEE J. Quantum Electron. 32(12) (1996) 2133.
[63] J. Wang, P. V. Allmen, J.-P. Leburton, K. J. Linden. Auger Recombination in Long- Wavelength Strained-Layer Quantum-Well Structures. IEEE J. Quantum Electron. 31(5) (1995) 864-875.
[64] Y. Li et al. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes. J. Appl. Phys. 116 (2014) 013101.
[65] V. B. Yekta, H. Kaatuzian. Design considerations to improve high temperature characteristics of 1.3μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers. Optik. 122 (2011) 514.
[66] C.D. Mahan, Many-body particle physics. Plenum press, New York and London, Chap.3 (1990).
[67] R. Nagarajan et al. High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28(10) (1992) 1990–2008.
[68] Z. Jun, B. Shi-Liang, H. Si-Hua. Phonon-assisted intersubband transitions in wurtzite GaN/Inx Ga1-X N quantum wells. Chin. Phys. B. 21(9) (2012) 097301.
[69] L. L. Guo, Y. H. Zhang, W. Z. Shen. Temperature dependence of Raman scattering in GaMnN. Appl. Phys. Lett. 89 (2006) 161920.
[70] X. Xiao-Yong et al. Temperature dependences of Raman scattering in different types of GaN epilayers. Chin. Phys. B. 21(2) (2012) 027803.
[71] A. Link et al. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 86 (1999) 6256.
[72] V. Fiorentini. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80 (2002) 1204.
[73] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385.
[74] M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley. Direct measurement of auger recombination in In0.1Ga 0.9N / GaN quantum wells and its impact on the efficiency of In0.1Ga 0.9N / GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 95 (2009) 201108.
[75] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F Gardner, A. Munkholm, M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91 141101 (2007).
[76] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni. U. Zehnder, B. Hahn. A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes. . J. Appl. Phys. 106 (2009) 114508.
[77] A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn. High-Power and High-Efficiency InGaN-Based Light Emitters. IEEE Trans. Electron Devices. 57(1), (2010) 79.
